BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36071350)

  • 1. In Vitro and In Silico Investigations on Drug Delivery in the Mouth-Throat Models with Handihaler®.
    Huang F; Zhou X; Dai W; Yu J; Zhou Z; Tong Z; Yu A
    Pharm Res; 2022 Nov; 39(11):3005-3019. PubMed ID: 36071350
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Wei X; Hindle M; Kaviratna A; Huynh BK; Delvadia RR; Sandell D; Byron PR
    J Aerosol Med Pulm Drug Deliv; 2018 Dec; 31(6):358-371. PubMed ID: 29878859
    [No Abstract]   [Full Text] [Related]  

  • 3. De-agglomeration Effect of the US Pharmacopeia and Alberta Throats on Carrier-Based Powders in Commercial Inhalation Products.
    Leung SS; Tang P; Zhou QT; Tong Z; Leung C; Decharaksa J; Yang R; Chan HK
    AAPS J; 2015 Nov; 17(6):1407-16. PubMed ID: 26201967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the effects of inhaler resistance on particle deposition behaviour - A computational modelling study.
    Cai X; Dong J; Milton-McGurk L; Lee A; Shen Z; Chan HK; Kourmatzis A; Cheng S
    Comput Biol Med; 2023 Dec; 167():107673. PubMed ID: 37956626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo-in vitro comparison of deposition in three mouth-throat models with Qvar and Turbuhaler inhalers.
    Zhang Y; Gilbertson K; Finlay WH
    J Aerosol Med; 2007; 20(3):227-35. PubMed ID: 17894531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler.
    Bass K; Farkas D; Longest W
    AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancement of a Positive-Pressure Dry Powder Inhaler for Children: Use of a Vertical Aerosolization Chamber and Three-Dimensional Rod Array Interface.
    Farkas D; Bonasera S; Bass K; Hindle M; Longest PW
    Pharm Res; 2020 Aug; 37(9):177. PubMed ID: 32862295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data.
    Ahookhosh K; Saidi M; Aminfar H; Mohammadpourfard M; Hamishehkar H; Yaqoubi S
    Int J Pharm; 2020 Sep; 587():119599. PubMed ID: 32663586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro monodisperse aerosol deposition in a mouth and throat with six different inhalation devices.
    DeHaan WH; Finlay WH
    J Aerosol Med; 2001; 14(3):361-7. PubMed ID: 11693848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of the effect of inhalation parameters, gender, age and disease severity on the lung deposition of dry powder aerosol drugs emitted by Turbuhaler®, Breezhaler® and Genuair® in COPD patients.
    Horváth A; Farkas Á; Szipőcs A; Tomisa G; Szalai Z; Gálffy G
    Eur J Pharm Sci; 2020 Nov; 154():105508. PubMed ID: 32836137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Dry Powder Inhaler Patient Interfaces for Improved Aerosol Delivery to Children.
    Bass K; Longest W
    AAPS PharmSciTech; 2020 May; 21(5):157. PubMed ID: 32451773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the Respimat Soft Mist Inhaler using a concurrent CFD and in vitro approach.
    Worth Longest P; Hindle M
    J Aerosol Med Pulm Drug Deliv; 2009 Jun; 22(2):99-112. PubMed ID: 18956950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does upper airway deformation affect drug deposition?
    Cheng S; Kourmatzis A; Mekonnen T; Gholizadeh H; Raco J; Chen L; Tang P; Chan HK
    Int J Pharm; 2019 Dec; 572():118773. PubMed ID: 31678391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dry powder inhaler with reduced mouth-throat deposition.
    Wang ZL; Grgic B; Finlay WH
    J Aerosol Med; 2006; 19(2):168-74. PubMed ID: 16796541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation and modification of commercial dry powder inhalers for the aerosolization of a submicrometer excipient enhanced growth (EEG) formulation.
    Son YJ; Longest PW; Tian G; Hindle M
    Eur J Pharm Sci; 2013 Jun; 49(3):390-9. PubMed ID: 23608613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of laryngeal jet on dry powder inhaler aerosol deposition: a numerical simulation.
    Babamiri A; Ahookhosh K; Abdollahi H; Taheri MH; Cui X; Nabaei M; Farnoud A
    Comput Methods Biomech Biomed Engin; 2023; 26(15):1859-1874. PubMed ID: 36511428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.
    Kolanjiyil AV; Kleinstreuer C; Sadikot RT
    Comput Biol Med; 2017 May; 84():247-253. PubMed ID: 27836120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does the United States Pharmacopeia throat introduce de-agglomeration of carrier-free powder from inhalers?
    Tang P; Kwok PC; Tong Z; Yang R; Raper JA; Chan HK
    Pharm Res; 2012 Jul; 29(7):1797-807. PubMed ID: 22327971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deposition of Particles in Human Mouth-Throat Replicas and a USP Induction Port.
    Cheng YS; Zhou Y; Su WC
    J Aerosol Med Pulm Drug Deliv; 2015 Jun; 28(3):147-55. PubMed ID: 25137223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.