These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36071435)

  • 1. Fusing an exonuclease with Cas9 enhances homologous recombination in Pichia pastoris.
    Zhang K; Duan X; Cai P; Gao L; Wu X; Yao L; Zhou YJ
    Microb Cell Fact; 2022 Sep; 21(1):182. PubMed ID: 36071435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers.
    Weninger A; Fischer JE; Raschmanová H; Kniely C; Vogl T; Glieder A
    J Cell Biochem; 2018 Apr; 119(4):3183-3198. PubMed ID: 29091307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris.
    Cai P; Duan X; Wu X; Gao L; Ye M; Zhou YJ
    Nucleic Acids Res; 2021 Jul; 49(13):7791-7805. PubMed ID: 34197615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris.
    Liu Q; Shi X; Song L; Liu H; Zhou X; Wang Q; Zhang Y; Cai M
    Microb Cell Fact; 2019 Aug; 18(1):144. PubMed ID: 31434578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Homologous Recombination Efficiency in
    Gao J; Ye C; Cheng J; Jiang L; Yuan X; Lian J
    ACS Synth Biol; 2022 Feb; 11(2):547-553. PubMed ID: 35061355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel CRISPR/Cas9 system with high genomic editing efficiency and recyclable auxotrophic selective marker for multiple-step metabolic rewriting in
    Wang X; Li Y; Jin Z; Liu X; Gao X; Guo S; Yu T
    Synth Syst Biotechnol; 2023 Sep; 8(3):445-451. PubMed ID: 37448527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris.
    Weninger A; Hatzl AM; Schmid C; Vogl T; Glieder A
    J Biotechnol; 2016 Oct; 235():139-49. PubMed ID: 27015975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simplified Gene Knockout by CRISPR-Cas9-Induced Homologous Recombination.
    Dalvie NC; Lorgeree T; Biedermann AM; Love KR; Love JC
    ACS Synth Biol; 2022 Jan; 11(1):497-501. PubMed ID: 34882409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative assessment of HR and NHEJ activities via CRISPR/Cas9-induced oligodeoxynucleotide-mediated DSB repair.
    Du J; Yin N; Xie T; Zheng Y; Xia N; Shang J; Chen F; Zhang H; Yu J; Liu F
    DNA Repair (Amst); 2018 Oct; 70():67-71. PubMed ID: 30212742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A versatile toolbox for CRISPR-based genome engineering in Pichia pastoris.
    Liao X; Li L; Jameel A; Xing XH; Zhang C
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9211-9218. PubMed ID: 34773154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining.
    Maruyama T; Dougan SK; Truttmann MC; Bilate AM; Ingram JR; Ploegh HL
    Nat Biotechnol; 2015 May; 33(5):538-42. PubMed ID: 25798939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing.
    Paulsen BS; Mandal PK; Frock RL; Boyraz B; Yadav R; Upadhyayula S; Gutierrez-Martinez P; Ebina W; Fasth A; Kirchhausen T; Talkowski ME; Agarwal S; Alt FW; Rossi DJ
    Nat Biomed Eng; 2017 Nov; 1(11):878-888. PubMed ID: 31015609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair.
    Gutschner T; Haemmerle M; Genovese G; Draetta GF; Chin L
    Cell Rep; 2016 Feb; 14(6):1555-1566. PubMed ID: 26854237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of Precise Gene Editing by the Association of Cas9 With Homologous Recombination Factors.
    Tran NT; Bashir S; Li X; Rossius J; Chu VT; Rajewsky K; Kühn R
    Front Genet; 2019; 10():365. PubMed ID: 31114605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52.
    Shao S; Ren C; Liu Z; Bai Y; Chen Z; Wei Z; Wang X; Zhang Z; Xu K
    Int J Biochem Cell Biol; 2017 Nov; 92():43-52. PubMed ID: 28928041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of
    Yannuzzi I; Butler MA; Fernandez J; LaRocque JR
    Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells.
    Zhu L; Mon H; Xu J; Lee JM; Kusakabe T
    Sci Rep; 2015 Dec; 5():18103. PubMed ID: 26657947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double-strand breaks.
    Langerak P; Mejia-Ramirez E; Limbo O; Russell P
    PLoS Genet; 2011 Sep; 7(9):e1002271. PubMed ID: 21931565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rates of homology directed repair of CRISPR-Cas9 induced double strand breaks are lower in naïve compared to primed human pluripotent stem cells.
    Dodsworth BT; Hatje K; Meyer CA; Flynn R; Cowley SA
    Stem Cell Res; 2020 Jul; 46():101852. PubMed ID: 32521498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.