These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 36071719)

  • 1. Enhancing spiking neural networks with hybrid top-down attention.
    Liu F; Zhao R
    Front Neurosci; 2022; 16():949142. PubMed ID: 36071719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STCA-SNN: self-attention-based temporal-channel joint attention for spiking neural networks.
    Wu X; Song Y; Zhou Y; Jiang Y; Bai Y; Li X; Yang X
    Front Neurosci; 2023; 17():1261543. PubMed ID: 38027490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct training high-performance spiking neural networks for object recognition and detection.
    Zhang H; Li Y; He B; Fan X; Wang Y; Zhang Y
    Front Neurosci; 2023; 17():1229951. PubMed ID: 37614339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attention Spiking Neural Networks.
    Yao M; Zhao G; Zhang H; Hu Y; Deng L; Tian Y; Xu B; Li G
    IEEE Trans Pattern Anal Mach Intell; 2023 Aug; 45(8):9393-9410. PubMed ID: 37022261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Optimized Spiking Neural Network Architectures for Classification Tasks on Embedded Platforms.
    Syed T; Kakani V; Cui X; Kim H
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-architectural knowledge distillation for spiking neural networks.
    Qiu H; Ning M; Song Z; Fang W; Chen Y; Sun T; Ma Z; Yuan L; Tian Y
    Neural Netw; 2024 Oct; 178():106475. PubMed ID: 38941738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks.
    Wu Y; Deng L; Li G; Zhu J; Shi L
    Front Neurosci; 2018; 12():331. PubMed ID: 29875621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring Adversarial Attack in Spiking Neural Networks With Spike-Compatible Gradient.
    Liang L; Hu X; Deng L; Wu Y; Li G; Ding Y; Li P; Xie Y
    IEEE Trans Neural Netw Learn Syst; 2023 May; 34(5):2569-2583. PubMed ID: 34473634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STSC-SNN: Spatio-Temporal Synaptic Connection with temporal convolution and attention for spiking neural networks.
    Yu C; Gu Z; Li D; Wang G; Wang A; Li E
    Front Neurosci; 2022; 16():1079357. PubMed ID: 36620452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Hybrid Neural Coding Approach for Pattern Recognition With Spiking Neural Networks.
    Chen X; Yang Q; Wu J; Li H; Tan KC
    IEEE Trans Pattern Anal Mach Intell; 2024 May; 46(5):3064-3078. PubMed ID: 38055367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks.
    Yu C; Du Y; Chen M; Wang A; Wang G; Li E
    Front Neurosci; 2022; 16():945037. PubMed ID: 36203801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A TTFS-based energy and utilization efficient neuromorphic CNN accelerator.
    Yu M; Xiang T; P S; Chu KTN; Amornpaisannon B; Tavva Y; Miriyala VPK; Carlson TE
    Front Neurosci; 2023; 17():1121592. PubMed ID: 37214405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences.
    He W; Wu Y; Deng L; Li G; Wang H; Tian Y; Ding W; Wang W; Xie Y
    Neural Netw; 2020 Dec; 132():108-120. PubMed ID: 32866745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroevolution Guided Hybrid Spiking Neural Network Training.
    Lu S; Sengupta A
    Front Neurosci; 2022; 16():838523. PubMed ID: 35546880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DIET-SNN: A Low-Latency Spiking Neural Network With Direct Input Encoding and Leakage and Threshold Optimization.
    Rathi N; Roy K
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; 34(6):3174-3182. PubMed ID: 34596559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Spatial-Channel-Temporal-Fused Attention for Spiking Neural Networks.
    Cai W; Sun H; Liu R; Cui Y; Wang J; Xia Y; Yao D; Guo D
    IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):14315-14329. PubMed ID: 37256807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.
    Kim Y; Panda P
    Neural Netw; 2021 Dec; 144():686-698. PubMed ID: 34662827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradient-based feature-attribution explainability methods for spiking neural networks.
    Bitar A; Rosales R; Paulitsch M
    Front Neurosci; 2023; 17():1153999. PubMed ID: 37829721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.