These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 3607209)
1. Abrupt onset of large scale nonproton ion release in purple membranes caused by increasing pH or ionic strength. Marinetti T Biophys J; 1987 Jun; 51(6):875-81. PubMed ID: 3607209 [TBL] [Abstract][Full Text] [Related]
2. Large transient nonproton ion movements in purple membrane suspensions are abolished by solubilization in Triton X-100. Marinetti T; Mauzerall D Biophys J; 1986 Sep; 50(3):405-15. PubMed ID: 3019444 [TBL] [Abstract][Full Text] [Related]
3. Nonproton ion release by purple membranes exhibits cooperativity as shown by determination of the optical cross-section. Marinetti T Biophys J; 1988 Aug; 54(2):197-204. PubMed ID: 3207821 [TBL] [Abstract][Full Text] [Related]
4. Large scale nonproton ion release and bacteriorhodopsin's state of aggregation in lipid vesicles. I. Monomers. Marinetti T Biophys J; 1987 Jul; 52(1):115-21. PubMed ID: 3607219 [TBL] [Abstract][Full Text] [Related]
5. Light-induced changes in H+ binding to the purple membrane. Effect of pH, light, temperature, and ionic strength. Renthal R J Biol Chem; 1981 Nov; 256(22):11471-6. PubMed ID: 7298612 [TBL] [Abstract][Full Text] [Related]
6. The quantum yield of flash-induced proton release by bacteriorhodopsin-containing membrane fragments. Ort DR; Parson WW Biophys J; 1979 Feb; 25(2 Pt 1):341-53. PubMed ID: 45396 [TBL] [Abstract][Full Text] [Related]
7. Order of proton uptake and release by bacteriorhodopsin at low pH. Mitchell D; Rayfield GW Biophys J; 1986 Feb; 49(2):563-6. PubMed ID: 3955185 [TBL] [Abstract][Full Text] [Related]
8. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface. Szundi I; Stoeckenius W Biophys J; 1989 Aug; 56(2):369-83. PubMed ID: 2775832 [TBL] [Abstract][Full Text] [Related]
9. Purple-to-blue transition of bacteriorhodopsin in a neutral lipid environment. Szundi I; Stoeckenius W Biophys J; 1988 Aug; 54(2):227-32. PubMed ID: 3207823 [TBL] [Abstract][Full Text] [Related]
10. Absolute quantum yields and proof of proton and nonproton transient release and uptake in photoexcited bacteriorhodopsin. Marinetti T; Mauzerall D Proc Natl Acad Sci U S A; 1983 Jan; 80(1):178-80. PubMed ID: 6296866 [TBL] [Abstract][Full Text] [Related]
11. The photochemical cycle of bacteriorhodopsin. Lozier RH; Niederberger W Fed Proc; 1977 May; 36(6):1805-9. PubMed ID: 15873 [TBL] [Abstract][Full Text] [Related]
12. Proton movement in reconstituted purple membrane of halobacteria: effects of pH and ionic composition of the medium. Ramirez F; Okazaki H; Tu S; Hutchinson H Arch Biochem Biophys; 1983 Apr; 222(2):464-72. PubMed ID: 6303222 [No Abstract] [Full Text] [Related]
14. The quantum efficiency of proton pumping by the purple membrane of Halobacterium halobium. Govindjee R; Ebrey TG; Crofts AR Biophys J; 1980 May; 30(2):231-42. PubMed ID: 7260274 [TBL] [Abstract][Full Text] [Related]
15. Photoreactions of bacteriorhodopsin at acid pH. Váró G; Lanyi JK Biophys J; 1989 Dec; 56(6):1143-51. PubMed ID: 2611328 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of pH-induced spectral changes in bacteriorhodopsin. Druckmann S; Samuni A; Ottolenghi M Biophys J; 1979 Apr; 26(1):143-5. PubMed ID: 45398 [TBL] [Abstract][Full Text] [Related]
17. Light scattering changes during the photocycle of bacteriorhodopsin. Czégé J Acta Biochim Biophys Hung; 1987; 22(4):463-78. PubMed ID: 3132005 [TBL] [Abstract][Full Text] [Related]
18. Membrane interactions in nerve myelin. I. Determination of surface charge from effects of pH and ionic strength on period. Inouye H; Kirschner DA Biophys J; 1988 Feb; 53(2):235-45. PubMed ID: 3345332 [TBL] [Abstract][Full Text] [Related]
19. Light energy conservation processes in Halobacterium halobium cells. Bogomolni RA Fed Proc; 1977 May; 36(6):1833-9. PubMed ID: 15879 [TBL] [Abstract][Full Text] [Related]