These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3607212)

  • 1. Membrane stress and internal pressure in a red blood cell freely suspended in a shear flow.
    Tran-Son-Tay R; Sutera SP; Zahalak GI; Rao PR
    Biophys J; 1987 Jun; 51(6):915-24. PubMed ID: 3607212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion.
    Tran-Son-Tay R; Sutera SP; Rao PR
    Biophys J; 1984 Jul; 46(1):65-72. PubMed ID: 6743758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deduction of intrinsic mechanical properties of the erythrocyte membrane from observations of tank-treading in the rheoscope.
    Sutera SP; Pierre PR; Zahalak GI
    Biorheology; 1989; 26(2):177-97. PubMed ID: 2605327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition.
    Skotheim JM; Secomb TW
    Phys Rev Lett; 2007 Feb; 98(7):078301. PubMed ID: 17359066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling.
    Dodson WR; Dimitrakopoulos P
    Biophys J; 2010 Nov; 99(9):2906-16. PubMed ID: 21044588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tank-treading and tumbling frequencies of capsules and red blood cells.
    Yazdani AZ; Kalluri RM; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046305. PubMed ID: 21599293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model of the velocity field external to a tank-treading red cell.
    Sutera SP; Tran Son Tay R
    Biorheology; 1983; 20(3):267-82. PubMed ID: 6626712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angle of inclination of tank-treading red cells: dependence on shear rate and suspending medium.
    Fischer TM; Korzeniewski R
    Biophys J; 2015 Mar; 108(6):1352-1360. PubMed ID: 25809249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of a single red blood cell in simple shear flow.
    Sinha K; Graham MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042710. PubMed ID: 26565275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The motion of close-packed red blood cells in shear flow.
    Secomb TW; Fischer TM; Skalak R
    Biorheology; 1983; 20(3):283-94. PubMed ID: 6626713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the energy dissipation in a tank-treading human red blood cell.
    Fischer TM
    Biophys J; 1980 Nov; 32(2):863-8. PubMed ID: 7260306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillatory tank-treading motion of erythrocytes in shear flows.
    Dodson WR; Dimitrakopoulos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011913. PubMed ID: 21867219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full dynamics of a red blood cell in shear flow.
    Dupire J; Socol M; Viallat A
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):20808-13. PubMed ID: 23213229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Velocity distribution on the membrane of a tank-treading red blood cell.
    Feng SS; Skalak R; Chien S
    Bull Math Biol; 1989; 51(4):449-65. PubMed ID: 2775918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium.
    Fischer TM
    Biophys J; 2007 Oct; 93(7):2553-61. PubMed ID: 17545241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of shear rate and suspending medium viscosity on elongation of red cells tank-treading in shear flow.
    Fischer TM; Korzeniewski R
    Cytometry A; 2011 Nov; 79(11):946-51. PubMed ID: 22015732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical approach to the motion of a red blood cell in Couette flow.
    Sugihara M; Niimi H
    Biorheology; 1984; 21(6):735-49. PubMed ID: 6518286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion and deformation of a red blood cell in a shear flow: a two-dimensional simulation of the wall effect.
    Sugihara M
    Biorheology; 1985; 22(1):1-19. PubMed ID: 3986315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation and internal flow of a vesicle in tank-treading motion in shear flow.
    Hatakenaka R; Takagi S; Matsumoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026324. PubMed ID: 21929107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.