These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3607216)

  • 1. Quasi-elastic light scattering studies of membrane motion in single red blood cells.
    Tishler RB; Carlson FD
    Biophys J; 1987 Jun; 51(6):993-7. PubMed ID: 3607216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the dynamic properties of the human red blood cell membrane using quasi-elastic light-scattering spectroscopy.
    Tishler RB; Carlson FD
    Biophys J; 1993 Dec; 65(6):2586-600. PubMed ID: 8312494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscope laser light scattering spectroscopy of single biological cells.
    Nishio I; Peetermans J; Tanaka T
    Cell Biophys; 1985 Jun; 7(2):91-105. PubMed ID: 2412698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F
    Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of inherent particle properties by dynamic light scattering: introducing electrorotational light scattering.
    Prüger B; Eppmann P; Donath E; Gimsa J
    Biophys J; 1997 Mar; 72(3):1414-24. PubMed ID: 9138587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature transitions of protein properties in human red blood cells.
    Artmann GM; Kelemen C; Porst D; Büldt G; Chien S
    Biophys J; 1998 Dec; 75(6):3179-83. PubMed ID: 9826638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S; Kuzman D; Waugh RE; Ziherl P; Zeks B
    Bioelectrochemistry; 2004 May; 62(2):107-13. PubMed ID: 15039011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic deformation of red blood cell ghosts induced by carbohydrates.
    Chang T; Sharpless PB; Davenport DA; Radunsky MB; Yu H
    Biochim Biophys Acta; 1983 Jun; 731(2):346-53. PubMed ID: 6849928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow-Induced Transitions of Red Blood Cell Shapes under Shear.
    Mauer J; Mendez S; Lanotte L; Nicoud F; Abkarian M; Gompper G; Fedosov DA
    Phys Rev Lett; 2018 Sep; 121(11):118103. PubMed ID: 30265089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation and orientation of red blood cells in a simple shear flow. Theoretical study and approach at small angle light scattering.
    Stoltz JF; Ravey JC; Larcan A; Mazeron P; Lucius M; Guillot M
    Scand J Clin Lab Invest Suppl; 1981; 156():67-75. PubMed ID: 6798684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous diffusion of erythrocytes in the presence of polyvinylpyrrolidone.
    Fritz OG
    Biophys J; 1984 Aug; 46(2):219-27. PubMed ID: 6478035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic properties of the erythrocyte membrane and the critical cell volume of erythrocytes.
    Mosior M
    Biochim Biophys Acta; 1988 Dec; 946(2):429-30. PubMed ID: 3207757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence studies on aged and young erythrocyte populations.
    Gareau R; Goulet H; Chénard C; Caron C; Brisson GR
    Cell Mol Biol; 1991; 37(1):15-9. PubMed ID: 2059983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased mechanical stability of neonatal red cell membrane quantified by measurement of the elastic area compressibility modulus.
    Meyburg J; Böhler T; Linderkamp O
    Clin Hemorheol Microcirc; 2000; 22(1):67-73. PubMed ID: 10711823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells.
    Gilev KV; Eremina E; Yurkin MA; Maltsev VP
    Opt Express; 2010 Mar; 18(6):5681-90. PubMed ID: 20389584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Rapid local oscillations of the surface of the human erythrocyte].
    Krol' AIu; Grinfel'dt MG; Smil'giavichius AD; Levin SV
    Tsitologiia; 1989 May; 31(5):563-8. PubMed ID: 2773065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erythrocyte and ghost cytoplasmic resistivity and voltage-dependent apparent size.
    Akeson SP; Mel HC
    Biophys J; 1983 Dec; 44(3):397-403. PubMed ID: 6661495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of the alterations of membrane shear elastic modulus and viscosity on the deformation and orientation of RBCs].
    Xie L; Yang H; Yao W; Liu D; Zeng Z; Ka W; Sun D; Wen Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):218-22, 226. PubMed ID: 11450538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light scattering of human red blood cells during metabolic remodeling of the membrane.
    Park Y; Best-Popescu CA; Dasari RR; Popescu G
    J Biomed Opt; 2011; 16(1):011013. PubMed ID: 21280900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angle of inclination of tank-treading red cells: dependence on shear rate and suspending medium.
    Fischer TM; Korzeniewski R
    Biophys J; 2015 Mar; 108(6):1352-1360. PubMed ID: 25809249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.