These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 36072228)

  • 1. Central carbon metabolism remodeling as a mechanism to develop drug tolerance and drug resistance in
    Eoh H; Liu R; Lim J; Lee JJ; Sell P
    Front Cell Infect Microbiol; 2022; 12():958240. PubMed ID: 36072228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoenolpyruvate depletion mediates both growth arrest and drug tolerance of
    Lim J; Lee JJ; Lee SK; Kim S; Eum SY; Eoh H
    Proc Natl Acad Sci U S A; 2021 Aug; 118(35):. PubMed ID: 34426499
    [No Abstract]   [Full Text] [Related]  

  • 3. A Novel Tool to Identify Bactericidal Compounds against Vulnerable Targets in Drug-Tolerant M. tuberculosis found in Caseum.
    Sarathy JP; Xie M; Jones RM; Chang A; Osiecki P; Weiner D; Tsao WS; Dougher M; Blanc L; Fotouhi N; Via LE; Barry CE; De Vlaminck I; Sherman DR; Dartois VA
    mBio; 2023 Apr; 14(2):e0059823. PubMed ID: 37017524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance and tolerance of Mycobacterium tuberculosis to antimicrobial agents-How M. tuberculosis can escape antibiotics.
    Li H; Yuan J; Duan S; Pang Y
    WIREs Mech Dis; 2022 Nov; 14(6):e1573. PubMed ID: 35753313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic Landscape of a Drug-Tolerant Persister Subpopulation of
    Sharma R; Lunge A; Mangla N; Agarwal N
    J Proteome Res; 2021 Sep; 20(9):4415-4426. PubMed ID: 34343006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CinA mediates multidrug tolerance in Mycobacterium tuberculosis.
    Kreutzfeldt KM; Jansen RS; Hartman TE; Gouzy A; Wang R; Krieger IV; Zimmerman MD; Gengenbacher M; Sarathy JP; Xie M; Dartois V; Sacchettini JC; Rhee KY; Schnappinger D; Ehrt S
    Nat Commun; 2022 Apr; 13(1):2203. PubMed ID: 35459278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent updates on drug resistance in Mycobacterium tuberculosis.
    Singh R; Dwivedi SP; Gaharwar US; Meena R; Rajamani P; Prasad T
    J Appl Microbiol; 2020 Jun; 128(6):1547-1567. PubMed ID: 31595643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PerSort Facilitates Characterization and Elimination of Persister Subpopulation in Mycobacteria.
    Srinivas V; Arrieta-Ortiz ML; Kaur A; Peterson EJR; Baliga NS
    mSystems; 2020 Dec; 5(6):. PubMed ID: 33262242
    [No Abstract]   [Full Text] [Related]  

  • 10. In vitro potency of 2-(((2-hydroxyphenyl)amino)methylene)-5,5-dimethylcyclohexane-1,3-dione against drug-resistant and non-replicating persisters of Mycobacterium tuberculosis.
    Rather MA; Bhat ZS; Lone AM; Maqbool M; Bhat BA; Ahmad Z
    J Glob Antimicrob Resist; 2021 Jun; 25():202-208. PubMed ID: 33789204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis.
    Lee JJ; Lee SK; Song N; Nathan TO; Swarts BM; Eum SY; Ehrt S; Cho SN; Eoh H
    Nat Commun; 2019 Jul; 10(1):2928. PubMed ID: 31266959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolving biology of
    Jones RM; Adams KN; Eldesouky HE; Sherman DR
    Front Cell Infect Microbiol; 2022; 12():1027394. PubMed ID: 36275024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting redox heterogeneity to counteract drug tolerance in replicating
    Mishra R; Kohli S; Malhotra N; Bandyopadhyay P; Mehta M; Munshi M; Adiga V; Ahuja VK; Shandil RK; Rajmani RS; Seshasayee ASN; Singh A
    Sci Transl Med; 2019 Nov; 11(518):. PubMed ID: 31723039
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Stanley S; Liu Q; Fortune SM
    Front Cell Infect Microbiol; 2022; 12():1007958. PubMed ID: 36262182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunometabolism during Mycobacterium tuberculosis Infection.
    Howard NC; Khader SA
    Trends Microbiol; 2020 Oct; 28(10):832-850. PubMed ID: 32409147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations of Mycobacterium tuberculosis induced by anti-tuberculosis treatment result in metabolism changes and elevation of ethambutol resistance.
    Sun L; Zhang L; Wang T; Jiao W; Li Q; Yin Q; Li J; Qi H; Xu F; Shen C; Xiao J; Liu S; Mokrousov I; Huang H; Shen A
    Infect Genet Evol; 2019 Aug; 72():151-158. PubMed ID: 30292007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the contribution of metabolism to
    Samuels AN; Wang ER; Harrison GA; Valenta JC; Stallings CL
    Front Cell Infect Microbiol; 2022; 12():958555. PubMed ID: 36072222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug resistance mechanisms and drug susceptibility testing for tuberculosis.
    Miotto P; Zhang Y; Cirillo DM; Yam WC
    Respirology; 2018 Dec; 23(12):1098-1113. PubMed ID: 30189463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic Signatures Predict Regulators of Drug Synergy and Clinical Regimen Efficacy against Tuberculosis.
    Ma S; Jaipalli S; Larkins-Ford J; Lohmiller J; Aldridge BB; Sherman DR; Chandrasekaran S
    mBio; 2019 Nov; 10(6):. PubMed ID: 31719182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive review on mechanism of action, resistance and evolution of antimycobacterial drugs.
    Chauhan A; Kumar M; Kumar A; Kanchan K
    Life Sci; 2021 Jun; 274():119301. PubMed ID: 33675895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.