These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 3607233)

  • 1. Model of cell electrofusion. Membrane electroporation, pore coalescence and percolation.
    Sugar IP; Förster W; Neumann E
    Biophys Chem; 1987 May; 26(2-3):321-35. PubMed ID: 3607233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic model for electric field-induced membrane pores. Electroporation.
    Sugar IP; Neumann E
    Biophys Chem; 1984 May; 19(3):211-25. PubMed ID: 6722274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell electrofusion based on nanosecond/microsecond pulsed electric fields.
    Li C; Ke Q; Yao C; Mi Y; Liu H; Lv Y; Yao C
    PLoS One; 2018; 13(5):e0197167. PubMed ID: 29795594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation--relation between short-lived and long-lived pores.
    Pavlin M; Miklavcic D
    Bioelectrochemistry; 2008 Nov; 74(1):38-46. PubMed ID: 18499534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field.
    Liu L; Mao Z; Zhang J; Liu N; Liu QH
    PLoS One; 2016; 11(7):e0158739. PubMed ID: 27391692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles.
    Kakorin S; Stoylov SP; Neumann E
    Biophys Chem; 1996 Jan; 58(1-2):109-16. PubMed ID: 8679914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical analysis for the fluctuation in the electric parameters of the electroporated cells before and during the electrofusion.
    Sherif S; Ghallab YH; Ismail Y
    Med Biol Eng Comput; 2022 Dec; 60(12):3585-3600. PubMed ID: 36258107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation.
    Freeman SA; Wang MA; Weaver JC
    Biophys J; 1994 Jul; 67(1):42-56. PubMed ID: 7919016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling electroporation in a single cell.
    Krassowska W; Filev PD
    Biophys J; 2007 Jan; 92(2):404-17. PubMed ID: 17056739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric pore distribution and loss of membrane lipid in electroporated DOPC vesicles.
    Tekle E; Astumian RD; Friauf WA; Chock PB
    Biophys J; 2001 Aug; 81(2):960-8. PubMed ID: 11463638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-electroporation as a model for fusion pore formation.
    Luitel P; Schroeter DF; Powell JW
    J Biomol Struct Dyn; 2007 Apr; 24(5):495-503. PubMed ID: 17313195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of lipid rearrangements during pore formation in the DPPC lipid bilayer.
    Wrona A; Kubica K
    J Liposome Res; 2018 Sep; 28(3):218-225. PubMed ID: 28641466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension.
    Zhelev DV; Needham D
    Biochim Biophys Acta; 1993 Apr; 1147(1):89-104. PubMed ID: 8466935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of electrically-induced constant tension on giant unilamellar vesicles using irreversible electroporation.
    Karal MAS; Ahamed MK; Rahman M; Ahmed M; Shakil MM; Siddique-E-Rabbani K
    Eur Biophys J; 2019 Dec; 48(8):731-741. PubMed ID: 31552440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low cost microprocessor-controlled electrofusion and electroporation system.
    McCormick CA; Toll MO; Marshall WH
    J Chem Technol Biotechnol; 1992; 54(2):159-69. PubMed ID: 1368271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and mechanism of cell membrane electrofusion.
    Abidor IG; Sowers AE
    Biophys J; 1992 Jun; 61(6):1557-69. PubMed ID: 1617138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical properties of cell pellets and cell electrofusion in a centrifuge.
    Abidor IG; Barbul AI; Zhelev DV; Doinov P; Bandrina IN; Osipova EM; Sukharev SI
    Biochim Biophys Acta; 1993 Nov; 1152(2):207-18. PubMed ID: 8218321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient oscillation of shape and membrane conductivity changes by field pulse-induced electroporation in nano-sized phospholipid vesicles.
    Dimitrov V; Kakorin S; Neumann E
    Phys Chem Chem Phys; 2013 May; 15(17):6303-22. PubMed ID: 23519343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications.
    Perrier DL; Rems L; Boukany PE
    Adv Colloid Interface Sci; 2017 Nov; 249():248-271. PubMed ID: 28499600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrofusion between heterogeneous-sized mammalian cells in a pellet: potential applications in drug delivery and hybridoma formation.
    Li LH; Hensen ML; Zhao YL; Hui SW
    Biophys J; 1996 Jul; 71(1):479-86. PubMed ID: 8804630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.