These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36072700)

  • 1. Thioester deprotection using a biomimetic NCL approach.
    Villamil V; Saiz C; Mahler G
    Front Chem; 2022; 10():934376. PubMed ID: 36072700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new procedure for thioester deprotection using thioglycolic acid in both homogeneous and heterogeneous phase.
    Villamil V; Saiz C; Mahler G
    Tetrahedron; 2021 Aug; 94():. PubMed ID: 34744193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-Terminal Proline Editing for the Synthesis of Peptides with Mercaptoproline and Selenoproline: Mechanistic Insights Lead to Greater Efficiency in Proline Native Chemical Ligation.
    Ludwig BA; Forbes CR; Zondlo NJ
    ACS Chem Biol; 2024 Feb; 19(2):536-550. PubMed ID: 38324914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide Thioester Formation via an Intramolecular N to S Acyl Shift for Peptide Ligation.
    Kawakami T
    Top Curr Chem; 2015; 362():107-35. PubMed ID: 25370522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traceless chemical ligation from S-, O-, and N-acyl isopeptides.
    Panda SS; Hall CD; Oliferenko AA; Katritzky AR
    Acc Chem Res; 2014 Apr; 47(4):1076-87. PubMed ID: 24617996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and use of a pseudo-cysteine for native chemical ligation.
    Alves DA; Esser D; Broadbridge RJ; Beevers AP; Chapman CP; Winsor CE; Betley JR
    J Pept Sci; 2003 Apr; 9(4):221-8. PubMed ID: 12725243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Native Chemical Ligation via N-Acylurea Thioester Surrogates Obtained by Fmoc Solid-Phase Peptide Synthesis.
    Palà-Pujadas J; Blanco-Canosa JB
    Methods Mol Biol; 2020; 2133():141-161. PubMed ID: 32144666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical analysis of the detailed mechanism of native chemical ligation reactions.
    Wang C; Guo QX; Fu Y
    Chem Asian J; 2011 May; 6(5):1241-51. PubMed ID: 21365769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic synthesis of cyclic peptides using novel thioester surrogates.
    Hemu X; Taichi M; Qiu Y; Liu DX; Tam JP
    Biopolymers; 2013 Sep; 100(5):492-501. PubMed ID: 23893856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of native chemical ligation on solid substrate by surface plasmon resonance.
    Wieczerzak E; Hamel R; Chabot V; Aimez V; Grandbois M; Charette PG; Escher E
    Biopolymers; 2008; 90(3):415-20. PubMed ID: 18240142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-T(N) antigens.
    Okamoto R; Souma S; Kajihara Y
    J Org Chem; 2009 Mar; 74(6):2494-501. PubMed ID: 19236026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards biomolecular assembly employing extended native chemical ligation in combination with thioester synthesis using an N-->S acyl shift.
    Ackrill T; Anderson DW; Macmillan D
    Biopolymers; 2010; 94(4):495-503. PubMed ID: 20593460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A native-chemical-ligation-mechanism-based ratiometric fluorescent probe for aminothiols.
    Yuan L; Lin W; Xie Y; Zhu S; Zhao S
    Chemistry; 2012 Nov; 18(45):14520-6. PubMed ID: 23008181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-Controlled Chemical Protein Synthesis: Sundry Shades of Latency.
    Agouridas V; Ollivier N; Vicogne J; Diemer V; Melnyk O
    Acc Chem Res; 2022 Sep; 55(18):2685-2697. PubMed ID: 36083810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a sufficiently reactive thioalkylester involving the side-chain thiol of cysteine applicable for kinetically controlled ligation.
    Tsuda S; Mochizuki M; Nishio H; Yoshiya T; Nishiuchi Y
    Biopolymers; 2016 Nov; 106(4):503-11. PubMed ID: 26583564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations.
    Agouridas V; El Mahdi O; Diemer V; Cargoët M; Monbaliu JM; Melnyk O
    Chem Rev; 2019 Jun; 119(12):7328-7443. PubMed ID: 31050890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfaces for immobilization of N-terminal cysteine derivatives via native chemical ligation.
    Anderson S
    Langmuir; 2008 Dec; 24(24):13962-8. PubMed ID: 19360954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From protein total synthesis to peptide transamidation and metathesis: playing with the reversibility of N,S-acyl or N,Se-acyl migration reactions.
    Melnyk O; Agouridas V
    Curr Opin Chem Biol; 2014 Oct; 22():137-45. PubMed ID: 25438800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkyl Thiocyanurates as Thioester Mimetics. Transthioesterification and Ligation Reactions with High Potential in Dynamic Covalent Chemistry.
    Wołczański G; Gil W; Cichos J; Lisowski M; Stefanowicz P
    J Org Chem; 2023 Jul; 88(13):8192-8202. PubMed ID: 37329497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface PEGylation via native chemical ligation.
    Byun E; Kim J; Kang SM; Lee H; Bang D; Lee H
    Bioconjug Chem; 2011 Jan; 22(1):4-8. PubMed ID: 21128623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.