BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36072757)

  • 1. High-throughput scNMT protocol for multiomics profiling of single cells from mouse brain and pancreatic organoids.
    Cerrizuela S; Kaya O; Kremer LPM; Sarvari A; Ellinger T; Straub J; Brunken J; Sanz-Morejón A; Korkmaz A; Martín-Villalba A
    STAR Protoc; 2022 Sep; 3(3):101555. PubMed ID: 36072757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniaturization of Smart-seq2 for Single-Cell and Single-Nucleus RNA Sequencing.
    Jaeger BN; Yángüez E; Gesuita L; Denoth-Lippuner A; Kruse M; Karayannis T; Jessberger S
    STAR Protoc; 2020 Sep; 1(2):100081. PubMed ID: 33000004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optimized 4C-seq protocol based on cistrome and epigenome data in the mouse RAW264.7 macrophage cell line.
    Huang Z; Wang C; Treuter E; Fan R
    STAR Protoc; 2022 Jun; 3(2):101338. PubMed ID: 35496794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells.
    Clark SJ; Argelaguet R; Kapourani CA; Stubbs TM; Lee HJ; Alda-Catalinas C; Krueger F; Sanguinetti G; Kelsey G; Marioni JC; Stegle O; Reik W
    Nat Commun; 2018 Feb; 9(1):781. PubMed ID: 29472610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouse kidney nuclear isolation and library preparation for single-cell combinatorial indexing RNA sequencing.
    Li H; Humphreys BD
    STAR Protoc; 2022 Dec; 3(4):101904. PubMed ID: 36595916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of mouse hippocampal brain organoids from primary embryonic neural stem cells.
    Ciarpella F; Zamfir RG; Campanelli A; Pedrotti G; Di Chio M; Bottani E; Decimo I
    STAR Protoc; 2023 Sep; 4(3):102413. PubMed ID: 37454299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A protocol for simultaneous high-sensitivity genotyping and chromatin accessibility profiling in single cells.
    Turkalj S; Jakobsen NA; Groom A; Radtke FA; Vyas P
    STAR Protoc; 2023 Dec; 4(4):102641. PubMed ID: 37897733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional profiling of mouse projection neurons with VECTORseq.
    Cheung V; Chung P; Feinberg EH
    STAR Protoc; 2022 Sep; 3(3):101625. PubMed ID: 36035788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for multimodal profiling of human kidneys with simultaneous high-throughput ATAC and RNA expression with sequencing.
    Li H; Humphreys BD
    STAR Protoc; 2024 Jun; 5(3):103049. PubMed ID: 38900631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimized protocol for isolation of murine pancreatic single cells with high yield and purity.
    Wu F; Jiang Z; Qian J; Kobayashi H; Waterbury QT; White RA; Ochiai Y; Zhi X; Tu R; Zheng B; Shi Q; Zamechek LB; Wang TC
    STAR Protoc; 2024 Mar; 5(1):102836. PubMed ID: 38219150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using human iPSC-derived kidney organoids to decipher SARS-CoV-2 pathology on single cell level.
    Reimer KC; Jansen J; Overheul GJ; Miesen P; van Rij RP; Triana SH; Smeets B; Schneider RK; Kramann R
    STAR Protoc; 2022 Sep; 3(3):101612. PubMed ID: 35983169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HIPRO: A High-Efficiency, Hypoxia-Induced Protocol for Generation of Photoreceptors in Retinal Organoids from Mouse Pluripotent Stem Cells.
    Chen HY; Kelley RA; Swaroop A
    STAR Protoc; 2020 Jun; 1(1):. PubMed ID: 32754720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol for functional profiling of patient-derived organoids for precision oncology.
    Nemati N; Boeck N; Lamberti G; Lisandrelli R; Trajanoski Z
    STAR Protoc; 2024 Mar; 5(1):102887. PubMed ID: 38367233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol for isolation and functional validation of label-retaining quiescent colorectal cancer stem cells from patient-derived organoids for RNA-seq.
    Regan JL
    STAR Protoc; 2022 Mar; 3(1):101225. PubMed ID: 35300001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct isolation of single cells from living brains of Drosophila melanogaster without dissociation for transcriptome analysis.
    Barros CS; Bossing T
    STAR Protoc; 2022 Dec; 3(4):101735. PubMed ID: 36181682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and application of POLYseq for profiling human liver organoids.
    Dunn AW; Cai Y; Iwasawa K; Kimura M; Takebe T
    STAR Protoc; 2021 Dec; 2(4):100976. PubMed ID: 34934958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GoT-Splice protocol for multi-omics profiling of gene expression, cell-surface proteins, mutational status, and RNA splicing in human cells.
    Ganesan S; Cortés-López M; Swett AD; Dai X; Hickey S; Chamely P; Hawkins AG; Juul S; Landau DA; Gaiti F
    STAR Protoc; 2024 Jun; 5(2):102966. PubMed ID: 38512867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and profiling of viable tumor cells from human ex vivo glioblastoma cultures through single-cell transcriptomics.
    Zhang J; Straehle J; Joseph K; Neidert N; Behringer S; Göldner J; Vlachos A; Prinz M; Fung C; Beck J; Schnell O; Heiland DH; Ravi VM
    STAR Protoc; 2023 Sep; 4(3):102383. PubMed ID: 37393609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol to isolate human normal and neoplastic pancreatic cells for single-cell omic analyses.
    Chen H; Peng J; Liu L; Huang D; Zhao Y; Wu W
    STAR Protoc; 2023 Sep; 4(3):102464. PubMed ID: 37480562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-input ATAC&mRNA-seq protocol for simultaneous profiling of chromatin accessibility and gene expression.
    Li R; Grimm SA; Wade PA
    STAR Protoc; 2021 Sep; 2(3):100764. PubMed ID: 34485936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.