These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 36072795)
21. Deep learning model for predicting postoperative survival of patients with gastric cancer. Zeng J; Song D; Li K; Cao F; Zheng Y Front Oncol; 2024; 14():1329983. PubMed ID: 38628668 [TBL] [Abstract][Full Text] [Related]
22. Machine learning methods for accurately predicting survival and guiding treatment in stage I and II hepatocellular carcinoma. Li X; Bao H; Shi Y; Zhu W; Peng Z; Yan L; Chen J; Shu X Medicine (Baltimore); 2023 Nov; 102(45):e35892. PubMed ID: 37960763 [TBL] [Abstract][Full Text] [Related]
23. Deep-Learning-Based Model for the Prediction of Cancer-Specific Survival in Patients with Spinal Chordoma. Cheng D; Liu D; Li X; Zhang Z; Mi Z; Tao W; Fu J; Fan H World Neurosurg; 2023 Oct; 178():e835-e845. PubMed ID: 37586553 [TBL] [Abstract][Full Text] [Related]
24. A deep learning model for accurately predicting cancer-specific survival in patients with primary bone sarcoma of the extremity: a population-based study. Cheng D; Liu D; Li X; Mi Z; Zhang Z; Tao W; Dang J; Zhu D; Fu J; Fan H Clin Transl Oncol; 2024 Mar; 26(3):709-719. PubMed ID: 37552409 [TBL] [Abstract][Full Text] [Related]
25. Deep-learning model for predicting the survival of rectal adenocarcinoma patients based on a surveillance, epidemiology, and end results analysis. Yu H; Huang T; Feng B; Lyu J BMC Cancer; 2022 Feb; 22(1):210. PubMed ID: 35216571 [TBL] [Abstract][Full Text] [Related]
26. Deep Learning for the Prediction of the Survival of Midline Diffuse Glioma with an H3K27M Alteration. Huang B; Chen T; Zhang Y; Mao Q; Ju Y; Liu Y; Wang X; Li Q; Lei Y; Ren Y Brain Sci; 2023 Oct; 13(10):. PubMed ID: 37891850 [TBL] [Abstract][Full Text] [Related]
27. Development and validation of novel interpretable survival prediction models based on drug exposures for severe heart failure during vulnerable period. Guo Y; Yu F; Jiang FF; Yin SJ; Jiang MH; Li YJ; Yang HY; Chen LR; Cai WK; He GH J Transl Med; 2024 Aug; 22(1):743. PubMed ID: 39107765 [TBL] [Abstract][Full Text] [Related]
28. Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database. Sun H; Wu S; Li S; Jiang X Medicine (Baltimore); 2023 Mar; 102(10):e33144. PubMed ID: 36897699 [TBL] [Abstract][Full Text] [Related]
29. Prediction of survival in oropharyngeal squamous cell carcinoma using machine learning algorithms: A study based on the surveillance, epidemiology, and end results database. Kim SI; Kang JW; Eun YG; Lee YC Front Oncol; 2022; 12():974678. PubMed ID: 36072804 [TBL] [Abstract][Full Text] [Related]
30. A novel staging system based on deep learning for overall survival in patients with esophageal squamous cell carcinoma. Zhang H; Jiang X; Yu Q; Yu H; Xu C J Cancer Res Clin Oncol; 2023 Sep; 149(11):8935-8944. PubMed ID: 37154930 [TBL] [Abstract][Full Text] [Related]
31. Comparison of the cox regression to machine learning in predicting the survival of anaplastic thyroid carcinoma. Xu L; Cai L; Zhu Z; Chen G BMC Endocr Disord; 2023 Jun; 23(1):129. PubMed ID: 37291551 [TBL] [Abstract][Full Text] [Related]
32. The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study. Xiao J; Mo M; Wang Z; Zhou C; Shen J; Yuan J; He Y; Zheng Y JMIR Med Inform; 2022 Feb; 10(2):e33440. PubMed ID: 35179504 [TBL] [Abstract][Full Text] [Related]
33. Development of machine learning prognostic models for overall survival of prostate cancer patients with lymph node-positive. Peng ZH; Tian JH; Chen BH; Zhou HB; Bi H; He MX; Li MR; Zheng XY; Wang YW; Chong T; Li ZL Sci Rep; 2023 Oct; 13(1):18424. PubMed ID: 37891423 [TBL] [Abstract][Full Text] [Related]
34. Deep neural survival networks for cardiovascular risk prediction: The Multi-Ethnic Study of Atherosclerosis (MESA). Hathaway QA; Yanamala N; Budoff MJ; Sengupta PP; Zeb I Comput Biol Med; 2021 Dec; 139():104983. PubMed ID: 34749095 [TBL] [Abstract][Full Text] [Related]
35. Machine learning models for predicting survival in patients with ampullary adenocarcinoma. Huang T; Huang L; Yang R; Li S; He N; Feng A; Li L; Lyu J Asia Pac J Oncol Nurs; 2022 Dec; 9(12):100141. PubMed ID: 36276885 [TBL] [Abstract][Full Text] [Related]
36. A deep learning algorithm with good prediction efficacy for cancer-specific survival in osteosarcoma: A retrospective study. Liu Y; Xie L; Wang D; Xia K PLoS One; 2023; 18(9):e0286841. PubMed ID: 37768965 [TBL] [Abstract][Full Text] [Related]
37. Explainable machine learning predicts survival of retroperitoneal liposarcoma: A study based on the SEER database and external validation in China. Wang M; Li Z; Zeng S; Wang Z; Ying Y; He W; Zhang Z; Wang H; Xu C Cancer Med; 2024 Jun; 13(11):e7324. PubMed ID: 38847519 [TBL] [Abstract][Full Text] [Related]
38. Survival prediction in second primary breast cancer patients with machine learning: An analysis of SEER database. Wu Y; Zhang Y; Duan S; Gu C; Wei C; Fang Y Comput Methods Programs Biomed; 2024 Sep; 254():108310. PubMed ID: 38996803 [TBL] [Abstract][Full Text] [Related]
39. Comparing the performance of statistical, machine learning, and deep learning algorithms to predict time-to-event: A simulation study for conversion to mild cognitive impairment. Billichová M; Coan LJ; Czanner S; Kováčová M; Sharifian F; Czanner G PLoS One; 2024; 19(1):e0297190. PubMed ID: 38252622 [TBL] [Abstract][Full Text] [Related]
40. Machine learning-based prediction of 1-year mortality for acute coronary syndrome Hadanny A; Shouval R; Wu J; Gale CP; Unger R; Zahger D; Gottlieb S; Matetzky S; Goldenberg I; Beigel R; Iakobishvili Z J Cardiol; 2022 Mar; 79(3):342-351. PubMed ID: 34857429 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]