These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36072840)

  • 1. A natural mutation of the
    Lyu X; Shi L; Zhao M; Li Z; Liao N; Meng Y; Ma Y; Zhou Y; Xue Q; Hu Z; Yang J; Zhang M
    Hortic Res; 2022; 9():uhac136. PubMed ID: 36072840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of single major QTL and candidate gene(s) governing hull-less seed trait in pumpkin.
    Kaur B; Garcha KS; Bhatia D; Khosa JS; Sharma M; Mittal A; Verma N; Dhatt AS
    Front Plant Sci; 2022; 13():948106. PubMed ID: 36035714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic Position and Markers Associated with the Hull-Less Seed Trait in Pumpkin.
    Meru G; Fu Y; Shrestha S; Michael VN; Dorval M; Mainviel R
    Plants (Basel); 2022 May; 11(9):. PubMed ID: 35567238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic Analysis Reveal the Molecular Mechanisms of Seed Coat Development in
    Xue Y; Shen Z; Tao F; Zhou J; Xu B
    Front Plant Sci; 2022; 13():772685. PubMed ID: 35283914
    [No Abstract]   [Full Text] [Related]  

  • 5. Genetic Mapping and Identification of the Candidate Gene for White Seed Coat in
    Shi Y; Zhang M; Shu Q; Ma W; Sun T; Xiang C; Wang C; Duan Y
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33804065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecific hybridization for transfer of hull-less seed trait from Cucurbita pepo to C. moschata.
    Kaur B; Garcha KS; Sandhu JS; Sharma M; Dhatt AS
    Sci Rep; 2023 Mar; 13(1):4627. PubMed ID: 36944656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of factors affecting volatile compound formation in roasted pumpkin seeds with selected ion flow tube-mass spectrometry (SIFT-MS) and sensory analysis.
    Bowman T; Barringer S
    J Food Sci; 2012 Jan; 77(1):C51-60. PubMed ID: 22122232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abscisic acid regulates secondary cell-wall formation and lignin deposition in
    Liu C; Yu H; Rao X; Li L; Dixon RA
    Proc Natl Acad Sci U S A; 2021 Feb; 118(5):. PubMed ID: 33495344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls.
    MacMillan CP; Birke H; Chuah A; Brill E; Tsuji Y; Ralph J; Dennis ES; Llewellyn D; Pettolino FA
    BMC Genomics; 2017 Jul; 18(1):539. PubMed ID: 28720072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a hull-less pumpkin (Cucurbita pepo L.) seed oil press-cake spread.
    Radočaj O; Dimić E; Vujasinović V
    J Food Sci; 2012 Sep; 77(9):C1011-7. PubMed ID: 22900635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative cellular, physiological and transcriptome analyses reveal the potential easy dehulling mechanism of rice-tartary buckwheat (Fagopyrum Tararicum).
    Li HY; Wu CX; Lv QY; Shi TX; Chen QJ; Chen QF
    BMC Plant Biol; 2020 Nov; 20(1):505. PubMed ID: 33148168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drying methods influence the physicochemical and functional properties of seed-used pumpkin.
    Chao E; Tian J; Fan L; Zhang T
    Food Chem; 2022 Feb; 369():130937. PubMed ID: 34474287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of NAC transcription factor NST1 activity by XYLEM NAC DOMAIN1 regulates secondary cell wall formation in Arabidopsis.
    Zhang Q; Luo F; Zhong Y; He J; Li L
    J Exp Bot; 2020 Feb; 71(4):1449-1458. PubMed ID: 31740956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes.
    Kovinich N; Saleem A; Arnason JT; Miki B
    BMC Genomics; 2011 Jul; 12():381. PubMed ID: 21801362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LBD29-Involved Auxin Signaling Represses NAC Master Regulators and Fiber Wall Biosynthesis.
    Lee KH; Du Q; Zhuo C; Qi L; Wang H
    Plant Physiol; 2019 Oct; 181(2):595-608. PubMed ID: 31377726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine Mapping and Whole-Genome Resequencing Identify the Seed Coat Color Gene in Brassica rapa.
    Wang Y; Xiao L; Guo S; An F; Du D
    PLoS One; 2016; 11(11):e0166464. PubMed ID: 27829069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A defective seed coat pattern (Net) is correlated with the post-transcriptional abundance of soluble proline-rich cell wall proteins.
    Percy JD; Philip R; Vodkin LO
    Plant Mol Biol; 1999 Jul; 40(4):603-13. PubMed ID: 10480384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats.
    Gillman JD; Tetlow A; Lee JD; Shannon JG; Bilyeu K
    BMC Plant Biol; 2011 Nov; 11():155. PubMed ID: 22070454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NST- and SND-subgroup NAC proteins coordinately act to regulate secondary cell wall formation in cotton.
    Fang S; Shang X; Yao Y; Li W; Guo W
    Plant Sci; 2020 Dec; 301():110657. PubMed ID: 33218627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative transcriptomic analysis of seed coats with high and low lignin contents reveals lignin and flavonoid biosynthesis in Brassica napus.
    Ding Y; Yu S; Wang J; Li M; Qu C; Li J; Liu L
    BMC Plant Biol; 2021 May; 21(1):246. PubMed ID: 34051742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.