These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36072995)

  • 41. Ultra-large chemical libraries for the discovery of high-affinity peptide binders.
    Quartararo AJ; Gates ZP; Somsen BA; Hartrampf N; Ye X; Shimada A; Kajihara Y; Ottmann C; Pentelute BL
    Nat Commun; 2020 Jun; 11(1):3183. PubMed ID: 32576815
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The next level in chemical space navigation: going far beyond enumerable compound libraries.
    Hoffmann T; Gastreich M
    Drug Discov Today; 2019 May; 24(5):1148-1156. PubMed ID: 30851414
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Very large virtual compound spaces: construction, storage and utility in drug discovery.
    Peng Z
    Drug Discov Today Technol; 2013 Sep; 10(3):e387-94. PubMed ID: 24050135
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient search of chemical space: navigating from fragments to structurally diverse chemotypes.
    Wassermann AM; Kutchukian PS; Lounkine E; Luethi T; Hamon J; Bocker MT; Malik HA; Cowan-Jacob SW; Glick M
    J Med Chem; 2013 Nov; 56(21):8879-91. PubMed ID: 24117015
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DNA-encoded libraries - an efficient small molecule discovery technology for the biomedical sciences.
    Kunig V; Potowski M; Gohla A; Brunschweiger A
    Biol Chem; 2018 Jun; 399(7):691-710. PubMed ID: 29894294
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing the bioactivity-relevant chemical space of robust reactions and common molecular building blocks.
    Hartenfeller M; Eberle M; Meier P; Nieto-Oberhuber C; Altmann KH; Schneider G; Jacoby E; Renner S
    J Chem Inf Model; 2012 May; 52(5):1167-78. PubMed ID: 22512717
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Augmenting Hit Identification by Virtual Screening Techniques in Small Molecule Drug Discovery.
    Yan XC; Sanders JM; Gao YD; Tudor M; Haidle AM; Klein DJ; Converso A; Lesburg CA; Zang Y; Wood HB
    J Chem Inf Model; 2020 Sep; 60(9):4144-4152. PubMed ID: 32309939
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combinatorial library design from reagent pharmacophore fingerprints.
    Chen H; Engkvist O; Blomberg N
    Methods Mol Biol; 2011; 685():135-52. PubMed ID: 20981522
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Forty years of combinatorial technology.
    Furka Á
    Drug Discov Today; 2022 Oct; 27(10):103308. PubMed ID: 35760283
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integrating virtual screening and combinatorial chemistry for accelerated drug discovery.
    López-Vallejo F; Caulfield T; Martínez-Mayorga K; Giulianotti MA; Nefzi A; Houghten RA; Medina-Franco JL
    Comb Chem High Throughput Screen; 2011 Jul; 14(6):475-87. PubMed ID: 21521151
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemogenomic strategies to expand the bioactive chemical space.
    Jacoby E; Mozzarelli A
    Curr Med Chem; 2009; 16(33):4374-81. PubMed ID: 19835567
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioactivity-guided navigation of chemical space.
    Bon RS; Waldmann H
    Acc Chem Res; 2010 Aug; 43(8):1103-14. PubMed ID: 20481515
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ligand specificity, privileged substructures and protein druggability from fragment-based screening.
    Barelier S; Krimm I
    Curr Opin Chem Biol; 2011 Aug; 15(4):469-74. PubMed ID: 21411360
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the design of lead-like DNA-encoded chemical libraries.
    Castan IFSF; Graham JS; Salvini CLA; Stanway-Gordon HA; Waring MJ
    Bioorg Med Chem; 2021 Aug; 43():116273. PubMed ID: 34147943
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Customizable Generation of Synthetically Accessible, Local Chemical Subspaces.
    Pottel J; Moitessier N
    J Chem Inf Model; 2017 Mar; 57(3):454-467. PubMed ID: 28234470
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Locating sweet spots for screening hits and evaluating pan-assay interference filters from the performance analysis of two lead-like libraries.
    Mok NY; Maxe S; Brenk R
    J Chem Inf Model; 2013 Mar; 53(3):534-44. PubMed ID: 23451880
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ligand Discovery for a Peptide-Binding GPCR by Structure-Based Screening of Fragment- and Lead-Like Chemical Libraries.
    Ranganathan A; Heine P; Rudling A; Plückthun A; Kummer L; Carlsson J
    ACS Chem Biol; 2017 Mar; 12(3):735-745. PubMed ID: 28032980
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficiency of hit generation and structural characterization in fragment-based ligand discovery.
    Larsson A; Jansson A; Åberg A; Nordlund P
    Curr Opin Chem Biol; 2011 Aug; 15(4):482-8. PubMed ID: 21724447
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reaching for the bright StARs in chemical space.
    Medina-Franco JL; Naveja JJ; López-López E
    Drug Discov Today; 2019 Nov; 24(11):2162-2169. PubMed ID: 31557448
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Balancing novelty with confined chemical space in modern drug discovery.
    Medina-Franco JL; Martinez-Mayorga K; Meurice N
    Expert Opin Drug Discov; 2014 Feb; 9(2):151-65. PubMed ID: 24350718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.