These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36073597)

  • 1. High density, addressable electrohydrodynamic printhead made of a silicon plate and polymer nozzle structure.
    Duan Y; Yang W; Xiao J; Gao J; Wei L; Huang Y; Yin Z
    Lab Chip; 2022 Oct; 22(20):3877-3884. PubMed ID: 36073597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Disposable Single-Nozzle Printhead for 3D Bioprinting of Continuous Multi-Material Constructs.
    Cameron T; Naseri E; MacCallum B; Ahmadi A
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing.
    Coppola S; Nasti G; Todino M; Olivieri F; Vespini V; Ferraro P
    ACS Appl Mater Interfaces; 2017 May; 9(19):16488-16494. PubMed ID: 28446020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Fabrication of Polymethyl Methacrylate Nozzles for Electrohydrodynamic Printing.
    Cheng E; Yang X; Yin Z; Hu W; Li L; Zou H
    J Nanosci Nanotechnol; 2021 Mar; 21(3):3249-3255. PubMed ID: 33404440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-adaptability nozzle-array printing system based on a set covering printing planning model for printed display manufacturing.
    Wang Y; Chen J; Yin Z; Li Y
    Sci Rep; 2023 Jan; 13(1):156. PubMed ID: 36599856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile and scalable fabrication of Ni cantilever nanoprobes using silicon template and micro-electroforming techniques for nano-tip focused electrohydrodynamic jet printing.
    Hu Y; Su S; Liang J; Xin W; Li X; Wang D
    Nanotechnology; 2021 Mar; 32(10):105301. PubMed ID: 33227721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Room-Temperature Bonding Method Based on Electrohydrodynamic Printing.
    Wu W; Yang X; Liu R; Yin Z; Wang DF; Zou H; Hu W; Li L
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1672-1677. PubMed ID: 33404432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrohydrodynamic Printing of Microscale PEDOT:PSS-PEO Features with Tunable Conductive/Thermal Properties.
    Chang J; He J; Lei Q; Li D
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19116-19122. PubMed ID: 29745637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coaxial nozzle-assisted electrohydrodynamic printing for microscale 3D cell-laden constructs.
    Liang H; He J; Chang J; Zhang B; Li D
    Int J Bioprint; 2018; 4(1):127. PubMed ID: 33102910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ejection of cell laden RPMI-1640 culture medium by Electrohydrodynamic method.
    Haiyi Z; Can W; Ruiwen J; Fei W; Yiwei W; Zhihai W; Xi C; Xiaolin W; Jingang G
    Biomed Microdevices; 2019 Jul; 21(3):64. PubMed ID: 31273462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of hASCs-laden structures using extrusion-based cell printing supplemented with an electric field.
    Yeo M; Ha J; Lee H; Kim G
    Acta Biomater; 2016 Jul; 38():33-43. PubMed ID: 27095485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution Patterning Using Two Modes of Electrohydrodynamic Jet: Drop on Demand and Near-field Electrospinning.
    Phung TH; Oh S; Kwon KS
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30059021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrohydrodynamic Inkjet Printing of Three-Dimensional Perovskite Nanocrystal Arrays for Full-Color Micro-LED Displays.
    Chen Y; Yang X; Fan X; Kang A; Kong X; Chen G; Zhong C; Lu Y; Fan Y; Hou X; Wu T; Chen Z; Wang S; Lin Y
    ACS Appl Mater Interfaces; 2024 May; 16(19):24908-24919. PubMed ID: 38706177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtip focused electrohydrodynamic jet printing with nanoscale resolution.
    Su S; Liang J; Wang Z; Xin W; Li X; Wang D
    Nanoscale; 2020 Dec; 12(48):24450-24462. PubMed ID: 33300927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrohydrodynamic Pulling Consolidated High-Efficiency 3D Printing to Architect Unusual Self-Polarized β-PVDF Arrays for Advanced Piezoelectric Sensing.
    He L; Lu J; Han C; Liu X; Liu J; Zhang C
    Small; 2022 Apr; 18(15):e2200114. PubMed ID: 35218161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode-tunable, micro/nanoscale electrohydrodynamic deposition techniques for optoelectronic device fabrication.
    Duan Y; Li H; Yang W; Shao Z; Wang Q; Huang Y; Yin Z
    Nanoscale; 2022 Sep; 14(37):13452-13472. PubMed ID: 36082930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated silicon microfluidic chip for picoliter-scale analyte segmentation and microscale printing for mass spectrometry imaging.
    Shi W; Bell S; Iyer H; Brenden CK; Zhang Y; Kim S; Park I; Bashir R; Sweedler J; Vlasov Y
    Lab Chip; 2022 Dec; 23(1):72-80. PubMed ID: 36477760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designs and applications of electrohydrodynamic 3D printing.
    Gao D; Zhou JG
    Int J Bioprint; 2019; 5(1):172. PubMed ID: 32782979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional nanoprinting via charged aerosol jets.
    Jung W; Jung YH; Pikhitsa PV; Feng J; Yang Y; Kim M; Tsai HY; Tanaka T; Shin J; Kim KY; Choi H; Rho J; Choi M
    Nature; 2021 Apr; 592(7852):54-59. PubMed ID: 33790446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of nanoscale nozzle for electrohydrodynamic (EHD) inkjet head and high precision patterning by drop-on-demand operation.
    Nguyen VD; Schrlau MG; Tran SB; Bau HH; Ko HS; Byun D
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7298-302. PubMed ID: 19908776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.