These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36073785)

  • 1. Hydrogen-Induced Aggregation of Au@Pd Nanoparticles for Eye-Readable Plasmonic Hydrogen Sensors.
    Li C; Zhu H; Guo Y; Ye S; Wang T; Fu Y; Zhang X
    ACS Sens; 2022 Sep; 7(9):2778-2787. PubMed ID: 36073785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of wide-detection-range H
    Yang H; Yang S; Li Q; Zhang X; Wang T; Gao Z; Zhang L; Guo L; Fu Y
    Chem Commun (Camb); 2020 Oct; 56(83):12636-12639. PubMed ID: 32960196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas.
    Song H; Luo Z; Liu M; Zhang G; Peng W; Wang B; Zhu Y
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29734789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bulk-Processed Plasmonic Plastic Nanocomposite Materials for Optical Hydrogen Detection.
    Darmadi I; Östergren I; Lerch S; Lund A; Moth-Poulsen K; Müller C; Langhammer C
    Acc Chem Res; 2023 Jul; 56(13):1850-1861. PubMed ID: 37352016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing.
    Yang A; Huntington MD; Cardinal MF; Masango SS; Van Duyne RP; Odom TW
    ACS Nano; 2014 Aug; 8(8):7639-47. PubMed ID: 24956125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamically Tunable Plasmonic Band for Reversible Colorimetric Sensors and Surface-Enhanced Raman Scattering Effect with Good Sensitivity and Stability.
    Men D; Liu G; Xing C; Zhang H; Xiang J; Sun Y; Hang L
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7494-7503. PubMed ID: 31944661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the Hydrogen-Sensing Performance of p-Type PdO by Modulating the Conduction Model.
    Yang S; Li Q; Li C; Cao T; Wang T; Fan F; Zhang X; Fu Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52754-52764. PubMed ID: 34709782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indicator Dyes and Catalytic Nanoparticles for Irreversible Visual Hydrogen Sensing.
    Smith ME; Stastny AL; Lynch JA; Yu Z; Zhang P; Heineman WR
    Anal Chem; 2020 Aug; 92(15):10651-10658. PubMed ID: 32628465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material.
    Sugawa K; Tahara H; Yamashita A; Otsuki J; Sagara T; Harumoto T; Yanagida S
    ACS Nano; 2015 Feb; 9(2):1895-904. PubMed ID: 25629586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hysteresis-free nanoplasmonic Pd-Au alloy hydrogen sensors.
    Wadell C; Nugroho FA; Lidström E; Iandolo B; Wagner JB; Langhammer C
    Nano Lett; 2015 May; 15(5):3563-70. PubMed ID: 25915663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive plasmonic metal nanoparticle-based sensors for the detection of organophosphorus pesticides.
    Dissanayake NM; Arachchilage JS; Samuels TA; Obare SO
    Talanta; 2019 Aug; 200():218-227. PubMed ID: 31036176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust LSPR Sensing Using Thermally Embedded Au Nanoparticles in Glass Substrates.
    Figueiredo NM; Serra R; Cavaleiro A
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34204448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailored Engineering of Bimetallic Plasmonic Au@Ag Core@Shell Nanoparticles.
    Mahmud S; Satter SS; Singh AK; Rahman MM; Mollah MYA; Susan MABH
    ACS Omega; 2019 Nov; 4(19):18061-18075. PubMed ID: 31720509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pd Nanoparticle Film on a Polymer Substrate for Transparent and Flexible Hydrogen Sensors.
    Xie B; Mao P; Chen M; Li Z; Han J; Yang L; Wang X; Han M; Liu JM; Wang G
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44603-44613. PubMed ID: 30511566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications.
    Zhang Z; Wang H; Chen Z; Wang X; Choo J; Chen L
    Biosens Bioelectron; 2018 Aug; 114():52-65. PubMed ID: 29778002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal Scaling and Design Rules of Hydrogen-Induced Optical Properties in Pd and Pd-Alloy Nanoparticles.
    Nugroho FAA; Darmadi I; Zhdanov VP; Langhammer C
    ACS Nano; 2018 Oct; 12(10):9903-9912. PubMed ID: 30157370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Batch preparation of gold nanoparticles with highly uniform morphology and tunable plasmonic properties.
    Liu T; Wang J; Xie Z; Wan L; Xiang J; Zhang Y; Luo S; Bin R; Liu G
    Nanotechnology; 2020 Oct; 31(40):405603. PubMed ID: 32526722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopic Au@PANI Core/Shell Nanoparticle Superlattice Monolayer Film with Dual-Responsive Plasmonic Switches.
    Lin H; Song L; Huang Y; Cheng Q; Yang Y; Guo Z; Su F; Chen T
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11296-11304. PubMed ID: 32043861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and Efficient Self-Assembly of Au@ZnO Core-Shell Nanoparticle Arrays with an Enhanced and Tunable Plasmonic Absorption for Photoelectrochemical Hydrogen Generation.
    Sun Y; Xu B; Shen Q; Hang L; Men D; Zhang T; Li H; Li C; Li Y
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31897-31906. PubMed ID: 28853855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity Tuning through Additive Heterogeneous Plasmon Coupling between 3D Assembled Plasmonic Nanoparticle and Nanocup Arrays.
    Seo S; Zhou X; Liu GL
    Small; 2016 Jul; 12(25):3453-62. PubMed ID: 27206214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.