BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 36073828)

  • 1. Polyurethanes Based on Polylactic Acid for 3D Printing and Shape-Memory Applications.
    He S; Hu S; Wu Y; Jin R; Niu Z; Wang R; Xue J; Wu S; Zhao X; Zhang L
    Biomacromolecules; 2022 Oct; 23(10):4192-4202. PubMed ID: 36073828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: "Effects of compatibilization".
    Dogan SK; Boyacioglu S; Kodal M; Gokce O; Ozkoc G
    J Mech Behav Biomed Mater; 2017 Jul; 71():349-361. PubMed ID: 28407571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding.
    Mi HY; Salick MR; Jing X; Jacques BR; Crone WC; Peng XF; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4767-76. PubMed ID: 24094186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biobased and Recyclable Polyurethane for Room-Temperature Damping and Three-Dimensional Printing.
    Shou T; Hu S; Wu Y; Tang X; Fu G; Zhao X; Zhang L
    ACS Omega; 2021 Nov; 6(44):30003-30011. PubMed ID: 34778671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lecithin doped electrospun poly(lactic acid)-thermoplastic polyurethane fibers for hepatocyte viability improvement.
    Liu X; Zhou L; Heng P; Xiao J; Lv J; Zhang Q; Hickey ME; Tu Q; Wang J
    Colloids Surf B Biointerfaces; 2019 Mar; 175():264-271. PubMed ID: 30551013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polysiloxane-Based Polyurethanes with High Strength and Recyclability.
    Wang W; Bai X; Sun S; Gao Y; Li F; Hu S
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and 3D printing of a biodegradable polylactic acid/thermoplastic polyurethane blend with laccase-modified lignin as a nucleating agent.
    Murillo-Morales G; Sethupathy S; Zhang M; Xu L; Ghaznavi A; Xu J; Yang B; Sun J; Zhu D
    Int J Biol Macromol; 2023 May; 236():123881. PubMed ID: 36894065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoforming Characteristics of PLA/TPU Multi-Material Specimens Fabricated with Fused Deposition Modelling under Different Temperatures.
    Sorimpuk NP; Choong WH; Chua BL
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological Structure Design and Fabrication of Biocompatible PLA/TPU/ADM Mesh with Appropriate Elasticity for Hernia Repair.
    Hu Q; Zhang R; Zhang H; Yang D; Liu S; Song Z; Gu Y; Ramalingam M
    Macromol Biosci; 2021 Jun; 21(6):e2000423. PubMed ID: 33870647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent-Free One-Shot Synthesis of Thermoplastic Polyurethane Based on Bio-Poly(1,3-propylene succinate) Glycol with Temperature-Sensitive Shape Memory Behavior.
    Pattamaprom C; Wu CH; Chen PH; Huang YL; Ranganathan P; Rwei SP; Chuan FS
    ACS Omega; 2020 Mar; 5(8):4058-4066. PubMed ID: 32149233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of sheep scapula models created with polylactic acid and thermoplastic polyurethane filaments by three-dimensional modelling.
    Kurt S; Selviler-Sizer S; Onuk B; Kabak M
    Anat Histol Embryol; 2022 Mar; 51(2):244-249. PubMed ID: 35014052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unprecedented Strength Polysiloxane-Based Polyurethane for 3D Printing and Shape Memory.
    Wang W; Sun S; Hu S; Yang B; He S; Wang R; Zhang L
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3324-3333. PubMed ID: 34984903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Green Approach to the Synthesis of Bio-Based Thermoplastic Polyurethane Elastomers with Partially Bio-Based Hard Blocks.
    Głowińska E; Kasprzyk P; Datta J
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content.
    Meng Q; Hu J; Zhu Y
    J Biomater Sci Polym Ed; 2008; 19(11):1437-54. PubMed ID: 18973722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azo-Functionalized Thermoplastic Polyurethane for Light-Driven Shape Memory Materials.
    Pan B; Park SM; Ying WB; Yoon DK; Lee KJ
    Macromol Rapid Commun; 2023 Feb; 44(3):e2200650. PubMed ID: 36350231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable 4D Printing of Photoactive Shape Memory Composite Structures.
    Deng Y; Zhang F; Jiang M; Liu Y; Yuan H; Leng J
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42568-42577. PubMed ID: 36097702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-Based, Recyclable and Self-Healing Polyurethane Composites with High Energy Dissipation and Shape Memory.
    Shou T; Zhai M; Wu Y; Wu S; Hu S; Zhao X; Zhang L
    Macromol Rapid Commun; 2022 Nov; 43(21):e2200486. PubMed ID: 35947533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and characterization of solvent-based 3D printed polylactic acid/45S5 bioactive glass composites for soft and hard tissue engineering.
    Dixit G; Pandey PM; Kaur T; Singh N
    Proc Inst Mech Eng H; 2023 Jun; 237(6):749-761. PubMed ID: 37171046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent-free synthesis of biostable segmented polyurethane shape memory polymers for biomedical applications.
    Ramezani M; Getya D; Gitsov I; Monroe MBB
    J Mater Chem B; 2024 Jan; 12(5):1217-1231. PubMed ID: 38168979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of PLA-TPU-Nanoclay composites and characterization of their morphological, mechanical, and shape memory properties.
    Arash S; Akbari B; Ghaleb S; Kaffashi B; Marouf BT
    J Mech Behav Biomed Mater; 2023 Mar; 139():105642. PubMed ID: 36706650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.