These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36074384)

  • 21. Surface properties of cork: Is cork a hydrophobic material?
    Chanut J; Wang Y; Dal Cin I; Ferret E; Gougeon RD; Bellat JP; Karbowiak T
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):416-423. PubMed ID: 34628314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a microwave assisted extraction method for the analysis of 2,4,6-trichloroanisole in cork stoppers by SIDA-SBSE-GC-MS.
    Vestner J; Fritsch S; Rauhut D
    Anal Chim Acta; 2010 Feb; 660(1-2):76-80. PubMed ID: 20103146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purge-and-trap preconcentration system coupled to capillary gas chromatography with atomic emission detection for 2,4,6-trichloroanisole determination in cork stoppers and wines.
    Campillo N; Aguinaga N; Viñas P; López-García I; Hernández-Córdoba M
    J Chromatogr A; 2004 Dec; 1061(1):85-91. PubMed ID: 15633747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensory attributes and volatile composition of a dry white wine under different packing configurations.
    Moreira N; Lopes P; Ferreira H; Cabral M; Guedes de Pinho P
    J Food Sci Technol; 2018 Jan; 55(1):424-430. PubMed ID: 29358836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Persistent organic pollutants in cork used for production of wine stoppers.
    Mazzoleni V; Dallagiovanna L; Trevisan M; Nicelli M
    Chemosphere; 2005 Mar; 58(11):1547-52. PubMed ID: 15694474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Losses of dissolved CO2 through the cork stopper during Champagne aging: toward a multiparameter modeling.
    Liger-Belair G; Villaume S
    J Agric Food Chem; 2011 Apr; 59(8):4051-6. PubMed ID: 21413811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Main routes of oxygen ingress through different closures into wine bottles.
    Lopes P; Saucier C; Teissedre PL; Glories Y
    J Agric Food Chem; 2007 Jun; 55(13):5167-70. PubMed ID: 17542613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new approach to the characterization of volatile signatures of cork wine stoppers.
    Boudaoud N; Eveleigh L
    J Agric Food Chem; 2003 Mar; 51(6):1530-3. PubMed ID: 12617578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wine aging: a bottleneck story.
    Karbowiak T; Crouvisier-Urion K; Lagorce A; Ballester J; Geoffroy A; Roullier-Gall C; Chanut J; Gougeon RD; Schmitt-Kopplin P; Bellat JP
    NPJ Sci Food; 2019; 3():14. PubMed ID: 31396559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fungal strains isolated from cork stoppers and the formation of 2,4,6-trichloroanisole involved in the cork taint of wine.
    Prak S; Gunata Z; Guiraud JP; Schorr-Galindo S
    Food Microbiol; 2007 May; 24(3):271-80. PubMed ID: 17188205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Atypical Off-Flavor Compounds in Natural Cork Stoppers by Multidimensional Gas Chromatographic Techniques.
    Slabizki P; Fischer C; Legrum C; Schmarr HG
    J Agric Food Chem; 2015 Sep; 63(35):7840-8. PubMed ID: 26257078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ethanol/Water extraction combined with solid-phase extraction and solid-phase microextraction concentration for the determination of chlorophenols in cork stoppers.
    Insa S; Besalú E; Iglesias C; Salvadó V; Anticó E
    J Agric Food Chem; 2006 Feb; 54(3):627-32. PubMed ID: 16448159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic voltammetry: a tool to quantify 2,4,6-trichloroanisole in aqueous samples from cork planks boiling industrial process.
    Peres AM; Freitas P; Dias LG; Sousa ME; Castro LM; Veloso AC
    Talanta; 2013 Dec; 117():438-44. PubMed ID: 24209365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New Cork-Based Materials and Applications.
    Gil L
    Materials (Basel); 2015 Feb; 8(2):625-637. PubMed ID: 28787962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of Different Stoppers on the Composition of Red and Rosé Lagrein, Schiava (Vernatsch) and Merlot Wines Stored in Bottle.
    Rossetti F; Jouin A; Jourdes M; Teissedre PL; Foligni R; Longo E; Boselli E
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of soil on cork quality.
    Pestana MN; Gomes AA
    Front Chem; 2014; 2():80. PubMed ID: 25353015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the Industrial Practice of Reactive Washing of Cork Stoppers Using a Fractional Factorial Design.
    Branco DG; Santiago C; Cabrita L; Evtuguin DV
    ACS Omega; 2022 Apr; 7(13):10901-10909. PubMed ID: 35415326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Origin and incidence of 2-methoxy-3,5-dimethylpyrazine, a compound with a "fungal" and "corky" aroma found in cork stoppers and oak chips in contact with wines.
    Chatonnet P; Fleury A; Boutou S
    J Agric Food Chem; 2010 Dec; 58(23):12481-90. PubMed ID: 21058737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct sample introduction-gas chromatography-mass spectrometry for the determination of haloanisole compounds in cork stoppers.
    Cacho JI; Nicolás J; Viñas P; Campillo N; Hernández-Córdoba M
    J Chromatogr A; 2016 Dec; 1475():74-79. PubMed ID: 27839755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Method for the gas chromatographic assay with mass selective detection of trichloro compounds in corks and wines applied to elucidate the potential cause of cork taint.
    Soleas GJ; Yan J; Seaver T; Goldberg DM
    J Agric Food Chem; 2002 Feb; 50(5):1032-9. PubMed ID: 11853476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.