BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36074539)

  • 21. Development of an Electrochemical Dual H
    Lee J; Jeong Y; Park S; Suh M; Lee Y
    ACS Sens; 2021 Nov; 6(11):4089-4097. PubMed ID: 34648260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functionalized Organic Thin Film Transistors for Biosensing.
    Wang N; Yang A; Fu Y; Li Y; Yan F
    Acc Chem Res; 2019 Feb; 52(2):277-287. PubMed ID: 30620566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Density Optophysiology Platform for Recording Intracellular and Extracellular Signals across the Brain of Free-Moving Animals.
    Zhang S; Liu Z; Zhang Z; Wang W; Tian Y
    Angew Chem Int Ed Engl; 2023 May; 62(22):e202301382. PubMed ID: 36988556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioapplications of Electrochemical Sensors and Biosensors.
    Dumitrescu E; Andreescu S
    Methods Enzymol; 2017; 589():301-350. PubMed ID: 28336068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiwalled carbon-nanotube-functionalized microelectrode arrays fabricated by microcontact printing: platform for studying chemical and electrical neuronal signaling.
    Fuchsberger K; Le Goff A; Gambazzi L; Toma FM; Goldoni A; Giugliano M; Stelzle M; Prato M
    Small; 2011 Feb; 7(4):524-30. PubMed ID: 21246714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Micro Electrochemical pH Sensor Applicable for Real-Time Ratiometric Monitoring of pH Values in Rat Brains.
    Zhou J; Zhang L; Tian Y
    Anal Chem; 2016 Feb; 88(4):2113-8. PubMed ID: 26768309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning interionic interaction for highly selective in vivo analysis.
    Yu P; He X; Mao L
    Chem Soc Rev; 2015 Oct; 44(17):5959-68. PubMed ID: 26505054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PEDOT:PSS-Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals.
    Liang Y; Offenhäusser A; Ingebrandt S; Mayer D
    Adv Healthc Mater; 2021 Jun; 10(11):e2100061. PubMed ID: 33970552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical microelectrode degradation monitoring:
    Doering M; Kieninger J; Urban GA; Weltin A
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34983028
    [No Abstract]   [Full Text] [Related]  

  • 30. In vitro and in vivo characterization of the properties of a multifiber carbon electrode allowing long-term electrochemical detection of dopamine in freely moving animals.
    el Ganouni S; Forni C; Nieoullon A
    Brain Res; 1987 Feb; 404(1-2):239-56. PubMed ID: 3494483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bridging the bio-electronic interface with biofabrication.
    Gordonov T; Liba B; Terrell JL; Cheng Y; Luo X; Payne GF; Bentley WE
    J Vis Exp; 2012 Jun; (64):e4231. PubMed ID: 22710498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-performance and versatile electrochemical aptasensor based on self-supported nanoporous gold microelectrode and enzyme-induced signal amplification.
    Shi L; Rong X; Wang Y; Ding S; Tang W
    Biosens Bioelectron; 2018 Apr; 102():41-48. PubMed ID: 29121558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybridization of bioelectrochemically functional infinite coordination polymer nanoparticles with carbon nanotubes for highly sensitive and selective in vivo electrochemical monitoring.
    Lu X; Cheng H; Huang P; Yang L; Yu P; Mao L
    Anal Chem; 2013 Apr; 85(8):4007-13. PubMed ID: 23496088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical latent redox ratiometric probes for real-time tracking and quantification of endogenous hydrogen sulfide production in living cells.
    Manibalan K; Mani V; Chang PC; Huang CH; Huang ST; Marchlewicz K; Neethirajan S
    Biosens Bioelectron; 2017 Oct; 96():233-238. PubMed ID: 28500947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implantable intracortical microelectrodes: reviewing the present with a focus on the future.
    Wang Y; Yang X; Zhang X; Wang Y; Pei W
    Microsyst Nanoeng; 2023; 9():7. PubMed ID: 36620394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid diamond/ carbon fiber microelectrodes enable multimodal electrical/chemical neural interfacing.
    Hejazi MA; Tong W; Stacey A; Soto-Breceda A; Ibbotson MR; Yunzab M; Maturana MI; Almasi A; Jung YJ; Sun S; Meffin H; Fang J; Stamp MEM; Ganesan K; Fox K; Rifai A; Nadarajah A; Falahatdoost S; Prawer S; Apollo NV; Garrett DJ
    Biomaterials; 2020 Feb; 230():119648. PubMed ID: 31791841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design Strategy of Fluorescent Probes for Live Drug-Induced Acute Liver Injury Imaging.
    Cheng D; Xu W; Gong X; Yuan L; Zhang XB
    Acc Chem Res; 2021 Jan; 54(2):403-415. PubMed ID: 33382249
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.