These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36074539)

  • 41. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.
    Dai X; Hong G; Gao T; Lieber CM
    Acc Chem Res; 2018 Feb; 51(2):309-318. PubMed ID: 29381054
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biodegradable Microelectrodes for Monitoring the Dynamics of Extracellular Ca
    Wang H; Zhang S; Liu R; Yin Y; Zeng H; Ren G; Zhang M
    Anal Chem; 2023 Jun; 95(22):8586-8595. PubMed ID: 37213133
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.
    Zhang Y; Xiao J; Sun Y; Wang L; Dong X; Ren J; He W; Xiao F
    Biosens Bioelectron; 2018 Feb; 100():453-461. PubMed ID: 28963962
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices.
    Wang S; Liu Y; Zhu A; Tian Y
    Anal Chem; 2023 Jan; 95(1):388-406. PubMed ID: 36625112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical Analysis of Neurotransmitters.
    Bucher ES; Wightman RM
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():239-61. PubMed ID: 25939038
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.
    Sage AT; Besant JD; Lam B; Sargent EH; Kelley SO
    Acc Chem Res; 2014 Aug; 47(8):2417-25. PubMed ID: 24961296
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Photoelectrochemical Sensor for Real-Time Monitoring of Neurochemical Signals in the Brain of Awake Animals.
    Wang X; Lu T; Cai Z; Han D; Ye X; Liu Z
    Anal Chem; 2024 Apr; 96(15):6079-6088. PubMed ID: 38563576
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Opportunities and dilemmas of
    Wu Y; Chen H; Guo L
    RSC Adv; 2019 Dec; 10(1):187-200. PubMed ID: 35492533
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A high-sensitive nano-modified biosensor for dynamic monitoring of glutamate and neural spike covariation from rat cortex to hippocampal sub-regions.
    Xiao G; Song Y; Zhang S; Yang L; Xu S; Zhang Y; Xu H; Gao F; Li Z; Cai X
    J Neurosci Methods; 2017 Nov; 291():122-130. PubMed ID: 28830725
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries.
    Zhu Y; Gao T; Fan X; Han F; Wang C
    Acc Chem Res; 2017 Apr; 50(4):1022-1031. PubMed ID: 28300397
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ionic liquids as green solvents and electrolytes for robust chemical sensor development.
    Rehman A; Zeng X
    Acc Chem Res; 2012 Oct; 45(10):1667-77. PubMed ID: 22891895
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Graphene on glassy carbon microelectrodes demonstrate long-term structural and functional stability in neurophysiological recording and stimulation.
    Nimbalkar S; Samejima S; Dang V; Hunt T; Nunez O; Moritz C; Kassegne S
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34492644
    [No Abstract]   [Full Text] [Related]  

  • 54. A High-Fidelity Electrochemical Platform Based on Au-Se Interface for Biological Detection.
    Chen Y; Song X; Li L; Tang B
    Anal Chem; 2020 Apr; 92(8):5855-5861. PubMed ID: 32207288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Galvanic Redox Potentiometry Based Microelectrode Array for Synchronous Ascorbate and Single-Unit Recordings in Rat Brain.
    Wei H; Li L; Jin J; Wu F; Yu P; Ma F; Mao L
    Anal Chem; 2020 Jul; 92(14):10177-10182. PubMed ID: 32600032
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering of Electron Affinity and Interfacial Charge Transfer of Graphene for Self-Powered Nonenzymatic Biosensor Applications.
    Sanad MF; Chava VSN; Shalan AE; Enriquez LG; Zheng T; Pilla S; Sreenivasan ST
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40731-40741. PubMed ID: 34424665
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species.
    Takmakov P; Ruda K; Scott Phillips K; Isayeva IS; Krauthamer V; Welle CG
    J Neural Eng; 2015 Apr; 12(2):026003. PubMed ID: 25627426
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    Xu C; Wu F; Yu P; Mao L
    ACS Sens; 2019 Dec; 4(12):3102-3118. PubMed ID: 31718157
    [No Abstract]   [Full Text] [Related]  

  • 59. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Long-term deep intracerebral microelectrode recordings in patients with drug-resistant epilepsy: Proposed guidelines based on 10-year experience.
    Lehongre K; Lambrecq V; Whitmarsh S; Frazzini V; Cousyn L; Soleil D; Fernandez-Vidal S; Mathon B; Houot M; Lemaréchal JD; Clemenceau S; Hasboun D; Adam C; Navarro V
    Neuroimage; 2022 Jul; 254():119116. PubMed ID: 35318150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.