These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36074770)

  • 1. Foot arch rigidity in walking: In vivo evidence for the contribution of metatarsophalangeal joint dorsiflexion.
    Davis DJ; Challis JH
    PLoS One; 2022; 17(9):e0274141. PubMed ID: 36074770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rise of the longitudinal arch when sitting, standing, and walking: Contributions of the windlass mechanism.
    Sichting F; Ebrecht F
    PLoS One; 2021; 16(4):e0249965. PubMed ID: 33831112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic coupling in distal foot joints during walking.
    Williams LR; Arch ES; Bruening DA
    J Foot Ankle Res; 2023 Jul; 16(1):44. PubMed ID: 37488576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ankle and midtarsal joint quasi-stiffness during walking with added mass.
    Kern AM; Papachatzis N; Patterson JM; Bruening DA; Takahashi KZ
    PeerJ; 2019; 7():e7487. PubMed ID: 31579566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of the windlass mechanism on kinematic and kinetic foot joint coupling.
    Williams LR; Ridge ST; Johnson AW; Arch ES; Bruening DA
    J Foot Ankle Res; 2022 Feb; 15(1):16. PubMed ID: 35172865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the mechanical function of the foot's arch across steady-state gait modes.
    Davis DJ; Challis JH
    J Biomech; 2023 Apr; 151():111529. PubMed ID: 36913798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metatarsophalangeal Joint Dynamic Stiffness During Toe Rocker Changes With Walking Speed.
    Nigro L; Arch ES
    J Appl Biomech; 2022 Oct; 38(5):320-327. PubMed ID: 36096476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of forefoot and arch posting orthotic designs on first metatarsophalangeal joint kinematics during gait.
    Nawoczenski DA; Ludewig PM
    J Orthop Sports Phys Ther; 2004 Jun; 34(6):317-27. PubMed ID: 15233393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Multi-Segment Foot Model Incorporating Plantar Aponeurosis for Detailed Kinematic and Kinetic Analyses of the Foot With Application to Gait Studies.
    Matsumoto Y; Ogihara N; Hanawa H; Kokubun T; Kanemura N
    Front Bioeng Biotechnol; 2022; 10():894731. PubMed ID: 35814002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Midtarsal locking, the windlass mechanism, and running strike pattern: A kinematic and kinetic assessment.
    Bruening DA; Pohl MB; Takahashi KZ; Barrios JA
    J Biomech; 2018 May; 73():185-191. PubMed ID: 29680311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning ground reaction forces for multi-segment foot joint kinetics.
    Bruening DA; Takahashi KZ
    Gait Posture; 2018 May; 62():111-116. PubMed ID: 29544155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foot stiffening during the push-off phase of human walking is linked to active muscle contraction, and not the windlass mechanism.
    Farris DJ; Birch J; Kelly L
    J R Soc Interface; 2020 Jul; 17(168):20200208. PubMed ID: 32674708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct visualization and measurement of the plantar aponeurosis behavior in foot arch deformation via the windlass mechanism.
    Matsumoto Y; Ogihara N
    Clin Anat; 2024 Apr; ():. PubMed ID: 38642017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human plantar fascial dimensions and shear wave velocity change in vivo as a function of ankle and metatarsophalangeal joint positions.
    Shiotani H; Maruyama N; Kurumisawa K; Yamagishi T; Kawakami Y
    J Appl Physiol (1985); 2021 Feb; 130(2):390-399. PubMed ID: 33242300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of foot structure on 1st metatarsophalangeal joint flexibility and hallucal loading.
    Rao S; Song J; Kraszewski A; Backus S; Ellis SJ; Deland JT; Hillstrom HJ
    Gait Posture; 2011 May; 34(1):131-7. PubMed ID: 21536440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First metatarsophalangeal joint range of motion is associated with lower limb kinematics in individuals with first metatarsophalangeal joint osteoarthritis.
    Allan JJ; McClelland JA; Munteanu SE; Buldt AK; Landorf KB; Roddy E; Auhl M; Menz HB
    J Foot Ankle Res; 2020 Jun; 13(1):33. PubMed ID: 32513212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-segment foot model reveals distal joint kinematic differences between habitual heel-toe walking and non-habitual toe walking.
    Kuska EC; Barrios JA; Kinney AL
    J Biomech; 2020 Sep; 110():109960. PubMed ID: 32827776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical effects of rocker shoes on plantar aponeurosis strain in patients with plantar fasciitis and healthy controls.
    Greve C; Schuitema D; Otten B; van Kouwenhove L; Verhaar E; Postema K; Dekker R; Hijmans JM
    PLoS One; 2019; 14(10):e0222388. PubMed ID: 31600227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chimpanzee and human midfoot motion during bipedal walking and the evolution of the longitudinal arch of the foot.
    Holowka NB; O'Neill MC; Thompson NE; Demes B
    J Hum Evol; 2017 Mar; 104():23-31. PubMed ID: 28317554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between forward propulsion and foot motion during gait in healthy young adults.
    Kondo M; Iwamoto Y; Kito N
    J Biomech; 2021 May; 121():110431. PubMed ID: 33873109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.