These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure. Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857 [TBL] [Abstract][Full Text] [Related]
3. Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. Steinrück HG; Cao C; Lukatskaya MR; Takacs CJ; Wan G; Mackanic DG; Tsao Y; Zhao J; Helms BA; Xu K; Borodin O; Wishart JF; Toney MF Angew Chem Int Ed Engl; 2020 Dec; 59(51):23180-23187. PubMed ID: 32881197 [TBL] [Abstract][Full Text] [Related]
4. Reversible Cl/Cl Sandstrom SK; Li Q; Sui Y; Lyons M; Chang CW; Zhang R; Jiang H; Yu M; Hoang D; Stickle WF; Xin HL; Feng Z; Jiang DE; Ji X Chem Sci; 2023 Nov; 14(44):12645-12652. PubMed ID: 38020363 [TBL] [Abstract][Full Text] [Related]
5. Ramifications of Water-in-Salt Interfacial Structure at Charged Electrodes for Electrolyte Electrochemical Stability. Vatamanu J; Borodin O J Phys Chem Lett; 2017 Sep; 8(18):4362-4367. PubMed ID: 28846430 [TBL] [Abstract][Full Text] [Related]
6. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
7. Heterogeneity and Nanostructure of Superconcentrated LiTFSI-EmimTFSI Hybrid Aqueous Electrolytes: Beyond the 21 m Limit of Water-in-Salt Electrolyte. Dhattarwal HS; Kashyap HK J Phys Chem B; 2022 Jul; 126(28):5291-5304. PubMed ID: 35819799 [TBL] [Abstract][Full Text] [Related]
8. Nature of the Cathode-Electrolyte Interface in Highly Concentrated Electrolytes Used in Graphite Dual-Ion Batteries. Kotronia A; Asfaw HD; Tai CW; Hahlin M; Brandell D; Edström K ACS Appl Mater Interfaces; 2021 Jan; 13(3):3867-3880. PubMed ID: 33434003 [TBL] [Abstract][Full Text] [Related]
9. Voltammetric study of the redox behaviour of the Hg(II)/Hg(I)/Hg system at a rotating metal-ring/glassy-carbon disc electrode. Kiekens P; Temmerman E; Verbeek F Talanta; 1984 Sep; 31(9):693-701. PubMed ID: 18963681 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Carbon/Electrolyte Interface in Supercapacitors Operating in Highly Concentrated Aqueous Electrolytes. Neto C; Pham HTT; Omnée R; Canizarès A; Slodczyk A; Deschamps M; Raymundo-Piñero E ACS Appl Mater Interfaces; 2022 Oct; 14(39):44405-44418. PubMed ID: 36150165 [TBL] [Abstract][Full Text] [Related]
11. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode. Mirceski V; Gulaboski R J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890 [TBL] [Abstract][Full Text] [Related]
12. The role of the electrical double layer and ion pairing on the electrochemical oxidation of hexachloroiridate(III) at Pt electrodes of nanometer dimensions. Watkins JJ; White HS Langmuir; 2004 Jun; 20(13):5474-83. PubMed ID: 15986689 [TBL] [Abstract][Full Text] [Related]
13. Analytical expressions for proton transfer voltammetry: analogy to surface redox voltammetry with Frumkin interactions. Calvente JJ; Luque AM; Andreu R; Mulder WH; Olloqui-Sariego JL Anal Chem; 2013 May; 85(9):4475-82. PubMed ID: 23534339 [TBL] [Abstract][Full Text] [Related]
14. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes. Yoo E; Zhou H ChemSusChem; 2016 Jun; 9(11):1249-54. PubMed ID: 27120298 [TBL] [Abstract][Full Text] [Related]
15. Electrocatalysis of NADH oxidation using electrochemically activated fluphenazine on carbon nanotube electrode. Sobczak A; Rębiś T; Milczarek G Bioelectrochemistry; 2015 Dec; 106(Pt B):308-15. PubMed ID: 26211441 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic, Kinetic, and Transport Contributions to Hydrogen Evolution Activity and Electrolyte-Stability Windows for Water-in-Salt Electrolytes. Zhao Y; Hu X; Stucky GD; Boettcher SW J Am Chem Soc; 2024 Feb; 146(5):3438-3448. PubMed ID: 38288948 [TBL] [Abstract][Full Text] [Related]
17. In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium-Imide- and Lithium-Imidazole-Based Electrolytes. Eshetu GG; Diemant T; Grugeon S; Behm RJ; Laruelle S; Armand M; Passerini S ACS Appl Mater Interfaces; 2016 Jun; 8(25):16087-100. PubMed ID: 27299469 [TBL] [Abstract][Full Text] [Related]
18. Influence of Additives on the Electrochemical and Interfacial Properties of SiO Sathya S; Angulakshmi N; Ahn JH; Kathiresan M; Stephan AM Langmuir; 2022 Mar; 38(8):2423-2434. PubMed ID: 35167306 [TBL] [Abstract][Full Text] [Related]
19. XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries. Dedryvère R; Leroy S; Martinez H; Blanchard F; Lemordant D; Gonbeau D J Phys Chem B; 2006 Jul; 110(26):12986-92. PubMed ID: 16805604 [TBL] [Abstract][Full Text] [Related]
20. Comparative studies in electrochemical degradation of sulfamethoxazole and diclofenac in water by using various electrodes and phosphate and sulfate supporting electrolytes. Sifuna FW; Orata F; Okello V; Jemutai-Kimosop S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Sep; 51(11):954-61. PubMed ID: 27337050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]