These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 36075112)
1. Impact of surface roughness and bulk porosity on spinal interbody implants. Levy HA; Karamian BA; Yalla GR; Canseco JA; Vaccaro AR; Kepler CK J Biomed Mater Res B Appl Biomater; 2023 Feb; 111(2):478-489. PubMed ID: 36075112 [TBL] [Abstract][Full Text] [Related]
2. Comparison in the same intervertebral space between titanium-coated and uncoated PEEK cages in lumbar interbody fusion surgery. Kashii M; Kitaguchi K; Makino T; Kaito T J Orthop Sci; 2020 Jul; 25(4):565-570. PubMed ID: 31375363 [TBL] [Abstract][Full Text] [Related]
3. Promotion of higher rates of early fusion using activated titanium versus polyetheretherketone cages in adults undergoing 1- and 2-level transforaminal lumbar interbody fusion procedures: a randomized controlled trial. Toop N; Dhaliwal J; Gifford CS; Gibbs D; Keister A; Miracle S; Forghani R; Grossbach AJ; Farhadi HF J Neurosurg Spine; 2023 Nov; 39(5):709-718. PubMed ID: 37542447 [TBL] [Abstract][Full Text] [Related]
4. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. McGilvray KC; Easley J; Seim HB; Regan D; Berven SH; Hsu WK; Mroz TE; Puttlitz CM Spine J; 2018 Jul; 18(7):1250-1260. PubMed ID: 29496624 [TBL] [Abstract][Full Text] [Related]
5. Additive-manufactured Ti-6Al-4 V/Polyetheretherketone composite porous cage for Interbody fusion: bone growth and biocompatibility evaluation in a porcine model. Tsai PI; Wu MH; Li YY; Lin TH; Tsai JSC; Huang HI; Lai HJ; Lee MH; Chen CY BMC Musculoskelet Disord; 2021 Feb; 22(1):171. PubMed ID: 33573634 [TBL] [Abstract][Full Text] [Related]
6. Early bone ingrowth and segmental stability of a trussed titanium cage versus a polyether ether ketone cage in an ovine lumbar interbody fusion model. Loenen ACY; Peters MJM; Bevers RTJ; Schaffrath C; van Haver E; Cuijpers VMJI; Rademakers T; van Rietbergen B; Willems PC; Arts JJ Spine J; 2022 Jan; 22(1):174-182. PubMed ID: 34274502 [TBL] [Abstract][Full Text] [Related]
7. Titanium (Ti) cages may be superior to polyetheretherketone (PEEK) cages in lumbar interbody fusion: a systematic review and meta-analysis of clinical and radiological outcomes of spinal interbody fusions using Ti versus PEEK cages. Tan JH; Cheong CK; Hey HWD Eur Spine J; 2021 May; 30(5):1285-1295. PubMed ID: 33555365 [TBL] [Abstract][Full Text] [Related]
8. Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model. Van Horn MR; Beard R; Wang W; Cunningham BW; Mullinix KP; Allall M; Bucklen BS Spine J; 2021 Dec; 21(12):2097-2103. PubMed ID: 34029756 [TBL] [Abstract][Full Text] [Related]
9. Titanium vs. polyetheretherketone (PEEK) interbody fusion: Meta-analysis and review of the literature. Seaman S; Kerezoudis P; Bydon M; Torner JC; Hitchon PW J Clin Neurosci; 2017 Oct; 44():23-29. PubMed ID: 28736113 [TBL] [Abstract][Full Text] [Related]
10. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Rao PJ; Pelletier MH; Walsh WR; Mobbs RJ Orthop Surg; 2014 May; 6(2):81-9. PubMed ID: 24890288 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of a polyetheretherketone (PEEK) titanium composite interbody spacer in an ovine lumbar interbody fusion model: biomechanical, microcomputed tomographic, and histologic analyses. McGilvray KC; Waldorff EI; Easley J; Seim HB; Zhang N; Linovitz RJ; Ryaby JT; Puttlitz CM Spine J; 2017 Dec; 17(12):1907-1916. PubMed ID: 28751242 [TBL] [Abstract][Full Text] [Related]
12. Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Nemoto O; Asazuma T; Yato Y; Imabayashi H; Yasuoka H; Fujikawa A Eur Spine J; 2014 Oct; 23(10):2150-5. PubMed ID: 25015180 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical Analysis of Porous Additive Manufactured Cages for Lateral Lumbar Interbody Fusion: A Finite Element Analysis. Zhang Z; Li H; Fogel GR; Liao Z; Li Y; Liu W World Neurosurg; 2018 Mar; 111():e581-e591. PubMed ID: 29288855 [TBL] [Abstract][Full Text] [Related]
14. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Wu SH; Li Y; Zhang YQ; Li XK; Yuan CF; Hao YL; Zhang ZY; Guo Z Artif Organs; 2013 Dec; 37(12):E191-201. PubMed ID: 24147953 [TBL] [Abstract][Full Text] [Related]
15. 3D-printed titanium cages without bone graft outperform PEEK cages with autograft in an animal model. Laratta JL; Vivace BJ; López-Peña M; Guzón FM; Gonzalez-Cantalpeidra A; Jorge-Mora A; Villar-Liste RM; Pino-Lopez L; Lukyanchuk A; Taghizadeh EA; Pino-Minguez J Spine J; 2022 Jun; 22(6):1016-1027. PubMed ID: 34906741 [TBL] [Abstract][Full Text] [Related]
16. Choice of Spinal Interbody Fusion Cage Material and Design Influences Subsidence and Osseointegration Performance. Fogel G; Martin N; Williams GM; Unger J; Yee-Yanagishita C; Pelletier M; Walsh W; Peng Y; Jekir M World Neurosurg; 2022 Jun; 162():e626-e634. PubMed ID: 35346883 [TBL] [Abstract][Full Text] [Related]
17. Early Outcomes of Three-Dimensional-Printed Porous Titanium versus Polyetheretherketone Cage Implantation for Stand-Alone Lateral Lumbar Interbody Fusion in the Treatment of Symptomatic Adjacent Segment Degeneration. Adl Amini D; Moser M; Oezel L; Zhu J; Okano I; Shue J; Sama AA; Cammisa FP; Girardi FP; Hughes AP World Neurosurg; 2022 Jun; 162():e14-e20. PubMed ID: 34863938 [TBL] [Abstract][Full Text] [Related]