These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36075125)

  • 21. Accounting for the Potential of Overdispersion in Estimation of the Time-varying Reproduction Number.
    Ho F; Parag KV; Adam DC; Lau EHY; Cowling BJ; Tsang TK
    Epidemiology; 2023 Mar; 34(2):201-205. PubMed ID: 36722802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EpiRegress: A Method to Estimate and Predict the Time-Varying Effective Reproduction Number.
    Jin S; Dickens BL; Lim JT; Cook AR
    Viruses; 2022 Jul; 14(7):. PubMed ID: 35891556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing the Performance of Three Computational Methods for Estimating the Effective Reproduction Number.
    Wang Z; Xu M; Yang Z; Jin Y; Zhang Y
    J Comput Biol; 2024 Feb; 31(2):128-146. PubMed ID: 38227389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Data-driven inference of the reproduction number for COVID-19 before and after interventions for 51 European countries.
    Karnakov P; Arampatzis G; Kičić I; Wermelinger F; Wälchli D; Papadimitriou C; Koumoutsakos P
    Swiss Med Wkly; 2020 Jul; 150():w20313. PubMed ID: 32677705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of local time-varying reproduction numbers in noisy surveillance data.
    Li W; Bulekova K; Gregor B; White LF; Kolaczyk ED
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2233):20210303. PubMed ID: 35965456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nine-month Trend of Time-Varying Reproduction Numbers of COVID-19 in West of Iran.
    Rahimi E; Hashemi Nazari SS; Mokhayeri Y; Sharhani A; Mohammadi R
    J Res Health Sci; 2021 Jun; 21(2):e00517. PubMed ID: 34465640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epidemic Landscape and Forecasting of SARS-CoV-2 in India.
    Rajendrakumar AL; Nair ATN; Nangia C; Chourasia PK; Chourasia MK; Syed MG; Nair AS; Nair AB; Koya MSF
    J Epidemiol Glob Health; 2021 Mar; 11(1):55-59. PubMed ID: 32959618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EpiLPS: A fast and flexible Bayesian tool for estimation of the time-varying reproduction number.
    Gressani O; Wallinga J; Althaus CL; Hens N; Faes C
    PLoS Comput Biol; 2022 Oct; 18(10):e1010618. PubMed ID: 36215319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computing the daily reproduction number of COVID-19 by inverting the renewal equation using a variational technique.
    Alvarez L; Colom M; Morel JD; Morel JM
    Proc Natl Acad Sci U S A; 2021 Dec; 118(50):. PubMed ID: 34876517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconciling early-outbreak estimates of the basic reproductive number and its uncertainty: framework and applications to the novel coronavirus (SARS-CoV-2) outbreak.
    Park SW; Bolker BM; Champredon D; Earn DJD; Li M; Weitz JS; Grenfell BT; Dushoff J
    J R Soc Interface; 2020 Jul; 17(168):20200144. PubMed ID: 32693748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Estimating the basic reproduction number of COVID-19 in Wuhan, China].
    Wang Y; You XY; Wang YJ; Peng LP; Du ZC; Gilmour S; Yoneoka D; Gu J; Hao C; Hao YT; Li JH
    Zhonghua Liu Xing Bing Xue Za Zhi; 2020 Apr; 41(4):476-479. PubMed ID: 32125128
    [No Abstract]   [Full Text] [Related]  

  • 32. Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America.
    Shutt DP; Manore CA; Pankavich S; Porter AT; Del Valle SY
    Epidemics; 2017 Dec; 21():63-79. PubMed ID: 28803069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Bayesian hierarchical approach to account for evidence and uncertainty in the modeling of infectious diseases: An application to COVID-19.
    Rehms R; Ellenbach N; Rehfuess E; Burns J; Mansmann U; Hoffmann S
    Biom J; 2024 Jan; 66(1):e2200341. PubMed ID: 38285407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling under-reporting in epidemics.
    Gamado KM; Streftaris G; Zachary S
    J Math Biol; 2014 Sep; 69(3):737-65. PubMed ID: 23942791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bayesian estimation of the effective reproduction number for pandemic influenza A H1N1 in Guangdong Province, China.
    Yang F; Yuan L; Tan X; Huang C; Feng J
    Ann Epidemiol; 2013 Jun; 23(6):301-6. PubMed ID: 23683708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The global dynamic transmissibility of COVID-19 and its influencing factors: an analysis of control measures from 176 countries.
    Wang H; Lan Y
    BMC Public Health; 2023 Feb; 23(1):404. PubMed ID: 36855085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating the time-dependent effective reproduction number and vaccination rate for COVID-19 in the USA and India.
    Bugalia S; Tripathi JP; Wang H
    Math Biosci Eng; 2023 Jan; 20(3):4673-4689. PubMed ID: 36896517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bayesian inference in an extended SEIR model with nonparametric disease transmission rate: an application to the Ebola epidemic in Sierra Leone.
    Frasso G; Lambert P
    Biostatistics; 2016 Oct; 17(4):779-92. PubMed ID: 27324411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential contagiousness of respiratory disease across the United States.
    Mallela A; Lin YT; Hlavacek WS
    Epidemics; 2023 Dec; 45():100718. PubMed ID: 37757572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bayesian monitoring of COVID-19 in Sweden.
    Marin R; Runvik H; Medvedev A; Engblom S
    Epidemics; 2023 Dec; 45():100715. PubMed ID: 37703786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.