These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36075138)

  • 61. The evolution of gene expression QTL in Saccharomyces cerevisiae.
    Ronald J; Akey JM
    PLoS One; 2007 Aug; 2(7):e678. PubMed ID: 17668057
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Concerted evolution of life stage performances signals recent selection on yeast nitrogen use.
    Ibstedt S; Stenberg S; Bagés S; Gjuvsland AB; Salinas F; Kourtchenko O; Samy JK; Blomberg A; Omholt SW; Liti G; Beltran G; Warringer J
    Mol Biol Evol; 2015 Jan; 32(1):153-61. PubMed ID: 25349282
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Causal Genetic Variation Underlying Metabolome Differences.
    Swain-Lenz D; Nikolskiy I; Cheng J; Sudarsanam P; Nayler D; Staller MV; Cohen BA
    Genetics; 2017 Aug; 206(4):2199-2206. PubMed ID: 28652377
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Harnessing natural sequence variation to dissect posttranscriptional regulatory networks in yeast.
    Fazlollahi M; Lee E; Muroff I; Lu XJ; Gomez-Alcala P; Causton HC; Bussemaker HJ
    G3 (Bethesda); 2014 Jun; 4(8):1539-53. PubMed ID: 24938291
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A noncomplementation screen for quantitative trait alleles in saccharomyces cerevisiae.
    Kim HS; Huh J; Riles L; Reyes A; Fay JC
    G3 (Bethesda); 2012 Jul; 2(7):753-60. PubMed ID: 22870398
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.
    Geng P; Xiao Y; Hu Y; Sun H; Xue W; Zhang L; Shi GY
    World J Microbiol Biotechnol; 2016 Sep; 32(9):145. PubMed ID: 27430512
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pervasive function and evidence for selection across standing genetic variation in S. cerevisiae.
    Jakobson CM; She R; Jarosz DF
    Nat Commun; 2019 Mar; 10(1):1222. PubMed ID: 30874558
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast.
    Sinha H; David L; Pascon RC; Clauder-Münster S; Krishnakumar S; Nguyen M; Shi G; Dean J; Davis RW; Oefner PJ; McCusker JH; Steinmetz LM
    Genetics; 2008 Nov; 180(3):1661-70. PubMed ID: 18780730
    [TBL] [Abstract][Full Text] [Related]  

  • 69. High-resolution mapping of complex traits with a four-parent advanced intercross yeast population.
    Cubillos FA; Parts L; Salinas F; Bergström A; Scovacricchi E; Zia A; Illingworth CJ; Mustonen V; Ibstedt S; Warringer J; Louis EJ; Durbin R; Liti G
    Genetics; 2013 Nov; 195(3):1141-55. PubMed ID: 24037264
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Revealing complex traits with small molecules and naturally recombinant yeast strains.
    Perlstein EO; Ruderfer DM; Ramachandran G; Haggarty SJ; Kruglyak L; Schreiber SL
    Chem Biol; 2006 Mar; 13(3):319-27. PubMed ID: 16638537
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Genetic mapping of MAPK-mediated complex traits Across S. cerevisiae.
    Treusch S; Albert FW; Bloom JS; Kotenko IE; Kruglyak L
    PLoS Genet; 2015 Jan; 11(1):e1004913. PubMed ID: 25569670
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The genetic architecture of biofilm formation in a clinical isolate of Saccharomyces cerevisiae.
    Granek JA; Murray D; Kayrkçi Ö; Magwene PM
    Genetics; 2013 Feb; 193(2):587-600. PubMed ID: 23172850
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-throughput analysis of in vivo protein stability.
    Kim I; Miller CR; Young DL; Fields S
    Mol Cell Proteomics; 2013 Nov; 12(11):3370-8. PubMed ID: 23897579
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Saccharomyces diversity and evolution: a budding model genus.
    Hittinger CT
    Trends Genet; 2013 May; 29(5):309-17. PubMed ID: 23395329
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Variance heterogeneity in Saccharomyces cerevisiae expression data: trans-regulation and epistasis.
    Nelson RM; Pettersson ME; Li X; Carlborg Ö
    PLoS One; 2013; 8(11):e79507. PubMed ID: 24223957
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis.
    Picotti P; Clément-Ziza M; Lam H; Campbell DS; Schmidt A; Deutsch EW; Röst H; Sun Z; Rinner O; Reiter L; Shen Q; Michaelson JJ; Frei A; Alberti S; Kusebauch U; Wollscheid B; Moritz RL; Beyer A; Aebersold R
    Nature; 2013 Feb; 494(7436):266-70. PubMed ID: 23334424
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mapping Causal Variants with Single-Nucleotide Resolution Reveals Biochemical Drivers of Phenotypic Change.
    She R; Jarosz DF
    Cell; 2018 Jan; 172(3):478-490.e15. PubMed ID: 29373829
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chromosome-scale genetic mapping using a set of 16 conditionally stable Saccharomyces cerevisiae chromosomes.
    Reid RJ; Sunjevaric I; Voth WP; Ciccone S; Du W; Olsen AE; Stillman DJ; Rothstein R
    Genetics; 2008 Dec; 180(4):1799-808. PubMed ID: 18832360
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing.
    Sharon E; Chen SA; Khosla NM; Smith JD; Pritchard JK; Fraser HB
    Cell; 2018 Oct; 175(2):544-557.e16. PubMed ID: 30245013
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae.
    García-Ríos E; Morard M; Parts L; Liti G; Guillamón JM
    BMC Genomics; 2017 Feb; 18(1):159. PubMed ID: 28196526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.