These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36075197)
1. Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study. Fiocchi S; Chiaramello E; Marrella A; Bonato M; Parazzini M; Ravazzani P J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36075197 [No Abstract] [Full Text] [Related]
2. Behavioral and Functional Brain Activity Alterations Induced by TMS Coils with Different Spatial Distributions. Pell GS; Roth Y; Shachar H; Isserles M; Barnea-Ygael N; Zangen A eNeuro; 2023 Apr; 10(4):. PubMed ID: 36931728 [TBL] [Abstract][Full Text] [Related]
3. Calculating the induced electromagnetic fields in real human head by deep transcranial magnetic stimulation. Lu M; Ueno S Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():795-8. PubMed ID: 24109807 [TBL] [Abstract][Full Text] [Related]
4. In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles. Bok I; Haber I; Qu X; Hai A Sci Rep; 2022 May; 12(1):8386. PubMed ID: 35589877 [TBL] [Abstract][Full Text] [Related]
5. Temporal and spatial profiles of evoked activity induced by magnetic stimulation using millimeter-sized coils in the mouse auditory cortex in vivo. Yoshikawa T; Higuchi H; Furukawa R; Tateno T Brain Res; 2022 Dec; 1796():148092. PubMed ID: 36115587 [TBL] [Abstract][Full Text] [Related]
6. Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles. Smith IT; Zhang E; Yildirim YA; Campos MA; Abdel-Mottaleb M; Yildirim B; Ramezani Z; Andre VL; Scott-Vandeusen A; Liang P; Khizroev S Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Mar; 15(2):e1849. PubMed ID: 36056752 [TBL] [Abstract][Full Text] [Related]
7. Electric field simulations for transcranial brain stimulation using FEM: an efficient implementation and error analysis. Saturnino GB; Madsen KH; Thielscher A J Neural Eng; 2019 Nov; 16(6):066032. PubMed ID: 31487695 [TBL] [Abstract][Full Text] [Related]
8. Multiscale Modeling of Magnetoelectric Nanoparticles for the Analysis of Spatially Selective Neural Stimulation. Kumari P; Wunderlich H; Milojkovic A; López JE; Fossati A; Jahanshahi A; Kozielski K Adv Healthc Mater; 2024 Sep; 13(24):e2302871. PubMed ID: 38262344 [TBL] [Abstract][Full Text] [Related]
9. Electric field estimation of deep transcranial magnetic stimulation clinically used for the treatment of neuropsychiatric disorders in anatomical head models. Parazzini M; Fiocchi S; Chiaramello E; Roth Y; Zangen A; Ravazzani P Med Eng Phys; 2017 May; 43():30-38. PubMed ID: 28236602 [TBL] [Abstract][Full Text] [Related]
10. Deep Transcranial Magnetic Stimulation: Improved Coil Design and Assessment of the Induced Fields Using MIDA Model. Samoudi AM; Tanghe E; Martens L; Joseph W Biomed Res Int; 2018; 2018():7061420. PubMed ID: 29967781 [TBL] [Abstract][Full Text] [Related]
11. Magnetic-field-synchronized wireless modulation of neural activity by magnetoelectric nanoparticles. Zhang E; Abdel-Mottaleb M; Liang P; Navarrete B; Yildirim YA; Campos MA; Smith IT; Wang P; Yildirim B; Yang L; Chen S; Smith I; Lur G; Nguyen T; Jin X; Noga BR; Ganzer P; Khizroev S Brain Stimul; 2022; 15(6):1451-1462. PubMed ID: 36374738 [TBL] [Abstract][Full Text] [Related]
12. Real-time estimation of electric fields induced by transcranial magnetic stimulation with deep neural networks. Yokota T; Maki T; Nagata T; Murakami T; Ugawa Y; Laakso I; Hirata A; Hontani H Brain Stimul; 2019; 12(6):1500-1507. PubMed ID: 31262697 [TBL] [Abstract][Full Text] [Related]
13. Controlling action potentials with magnetoelectric nanoparticles. Zhang E; Shotbolt M; Chang CY; Scott-Vandeusen A; Chen S; Liang P; Radu D; Khizroev S Brain Stimul; 2024; 17(5):1005-1017. PubMed ID: 39209064 [TBL] [Abstract][Full Text] [Related]
14. Modelling of the Electric Field Distribution in Deep Transcranial Magnetic Stimulation in the Adolescence, in the Adulthood, and in the Old Age. Fiocchi S; Longhi M; Ravazzani P; Roth Y; Zangen A; Parazzini M Comput Math Methods Med; 2016; 2016():9039613. PubMed ID: 27069502 [TBL] [Abstract][Full Text] [Related]
15. Magnetoelectric nanoparticles shape modulates their electrical output. Marrella A; Suarato G; Fiocchi S; Chiaramello E; Bonato M; Parazzini M; Ravazzani P Front Bioeng Biotechnol; 2023; 11():1219777. PubMed ID: 37691903 [TBL] [Abstract][Full Text] [Related]
16. A multichannel magnetic stimulation system using submillimeter-sized coils: system development and experimental application to rodent brain in vivo. Minusa S; Muramatsu S; Osanai H; Tateno T J Neural Eng; 2019 Oct; 16(6):066014. PubMed ID: 31642445 [TBL] [Abstract][Full Text] [Related]
17. Magnetoelectrics for Implantable Bioelectronics: Progress to Date. Alrashdan F; Yang K; Robinson JT Acc Chem Res; 2024 Oct; 57(20):2953-2962. PubMed ID: 39366673 [TBL] [Abstract][Full Text] [Related]
18. Computational Study Toward Deep Transcranial Magnetic Stimulation Using Coaxial Circular Coils. Lu M; Ueno S IEEE Trans Biomed Eng; 2015 Dec; 62(12):2911-9. PubMed ID: 26151931 [TBL] [Abstract][Full Text] [Related]
19. Individual head models for estimating the TMS-induced electric field in rat brain. Koponen LM; Stenroos M; Nieminen JO; Jokivarsi K; Gröhn O; Ilmoniemi RJ Sci Rep; 2020 Oct; 10(1):17397. PubMed ID: 33060694 [TBL] [Abstract][Full Text] [Related]
20. Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy. Gomez LJ; Goetz SM; Peterchev AV J Neural Eng; 2018 Aug; 15(4):046033. PubMed ID: 29855433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]