These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36075507)

  • 1. Setting course for a translational pharmacology and a predictive toxicology based on the numerical probability of clinical relevance.
    Suarez-Torres JD; Ciangherotti CE; Orozco CA
    Environ Toxicol Pharmacol; 2023 Jan; 97():103968. PubMed ID: 36075507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applying Bayesian forecasting to predictive toxicology: The probability of innate carcinogenicity to humans of colorants synthesized from benzidine.
    Suarez-Torres JD; Orozco CA; Ciangherotti CE
    Toxicol Lett; 2021 Oct; 351():111-134. PubMed ID: 34384884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The numerical probability of carcinogenicity to humans of some antimicrobials: Nitro-monoaromatics (including 5-nitrofurans and 5-nitroimidazoles), quinoxaline-1,4-dioxides (including carbadox), and chloramphenicol.
    Suarez-Torres JD; Orozco CA; Ciangherotti CE
    Toxicol In Vitro; 2021 Sep; 75():105172. PubMed ID: 33862175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The numerical probability of carcinogenicity to humans of some pharmaceutical drugs: Alkylating agents, topoisomerase inhibitors or poisons, and DNA intercalators.
    Suarez-Torres JD; Orozco CA; Ciangherotti CE
    Fundam Clin Pharmacol; 2021 Dec; 35(6):1069-1089. PubMed ID: 33772863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future of toxicology--predictive toxicology: An expanded view of "chemical toxicity".
    Richard AM
    Chem Res Toxicol; 2006 Oct; 19(10):1257-62. PubMed ID: 17040094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling animal toxicants by automatically mining public bioassay data: a big data approach for computational toxicology.
    Zhang J; Hsieh JH; Zhu H
    PLoS One; 2014; 9(6):e99863. PubMed ID: 24950175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the utility of the lifetime mouse bioassay in the identification of cancer hazards for humans.
    Osimitz TG; Droege W; Boobis AR; Lake BG
    Food Chem Toxicol; 2013 Oct; 60():550-62. PubMed ID: 23954551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concordance of Noncarcinogenic Endpoints in Rodent Chemical Bioassays.
    Wang B; Gray G
    Risk Anal; 2015 Jun; 35(6):1154-66. PubMed ID: 25545328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the toxicologic pathologist in the post-genomic era(#).
    Maronpot RR
    J Toxicol Pathol; 2013 Jun; 26(2):105-10. PubMed ID: 23914052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into toxicology, safety pharmacology, and drug dependence testing: The performance and predictive values of nonclinical tests.
    Suarez-Torres JD; Ciangherotti CE; Jimenez-Orozco FA
    J Pharmacol Toxicol Methods; 2020; 103():106684. PubMed ID: 32173560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 2-year rodent bioassay in drug and chemical carcinogenicity testing: Performance, utility, and configuration for cancer hazard identification.
    Suarez-Torres JD; Orozco CA; Ciangherotti CE
    J Pharmacol Toxicol Methods; 2021; 110():107070. PubMed ID: 33905862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Drosophila for screening developmental toxicants: test results with eighteen chemicals and presentation of a new Drosophila bioassay.
    Lynch DW; Schuler RL; Hood RD; Davis DG
    Teratog Carcinog Mutagen; 1991; 11(3):147-73. PubMed ID: 1686822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The limits of two-year bioassay exposure regimens for identifying chemical carcinogens.
    Huff J; Jacobson MF; Davis DL
    Environ Health Perspect; 2008 Nov; 116(11):1439-42. PubMed ID: 19057693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the Probability that a Chemical Causes Steatosis Using Adverse Outcome Pathway Bayesian Networks (AOPBNs).
    Burgoon LD; Angrish M; Garcia-Reyero N; Pollesch N; Zupanic A; Perkins E
    Risk Anal; 2020 Mar; 40(3):512-523. PubMed ID: 31721239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico toxicology for the pharmaceutical sciences.
    Valerio LG
    Toxicol Appl Pharmacol; 2009 Dec; 241(3):356-70. PubMed ID: 19716836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Historical perspective on the use of animal bioassays to predict carcinogenicity: evolution in design and recognition of utility.
    Beyer LA; Beck BD; Lewandowski TA
    Crit Rev Toxicol; 2011 Apr; 41(4):321-38. PubMed ID: 21438739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing In Vitro-In Vivo Extrapolations of Mechanism-Specific Toxicity Data Through Toxicokinetic Modeling.
    Brinkmann M; Preuss TG; Hollert H
    Adv Biochem Eng Biotechnol; 2017; 157():293-317. PubMed ID: 27619489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The predictivity of the -alert performance- functionality of the OECD QSAR-Toolbox (c/w further issues on the predictivity of nonclinical testing).
    Suarez-Torres JD; Ciangherotti CE; Jimenez-Orozco FA
    Toxicol In Vitro; 2020 Aug; 66():104858. PubMed ID: 32278032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.