These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Ligand Field Effects on the Aqueous Ru(III)/Ru(II) Redox Couple from an All-Atom Density Functional Theory Perspective. Ayala R; Sprik M J Chem Theory Comput; 2006 Sep; 2(5):1403-15. PubMed ID: 26626848 [TBL] [Abstract][Full Text] [Related]
23. Understanding hydrogen atom transfer: from bond strengths to Marcus theory. Mayer JM Acc Chem Res; 2011 Jan; 44(1):36-46. PubMed ID: 20977224 [TBL] [Abstract][Full Text] [Related]
24. Solvent reorganization of electron transitions in viscous solvents. Ghorai PK; Matyushov DV J Chem Phys; 2006 Apr; 124(14):144510. PubMed ID: 16626217 [TBL] [Abstract][Full Text] [Related]
25. Trade-Off between Redox Potential and the Strength of Electrochemical CO Bui AT; Hartley NA; Thom AJW; Forse AC J Phys Chem C Nanomater Interfaces; 2022 Aug; 126(33):14163-14172. PubMed ID: 36051254 [TBL] [Abstract][Full Text] [Related]
26. Temperature- and pressure-dependence of the outer-sphere reorganization free energy for electron transfer reactions: a continuum approach. Manjari SR; Kim HJ J Phys Chem B; 2006 Jan; 110(1):494-500. PubMed ID: 16471560 [TBL] [Abstract][Full Text] [Related]
27. Solvent Effects on the Symmetric and Asymmetric S Tang W; Zhao J; Jiang P; Xu X; Zhao S; Tong Z J Phys Chem B; 2020 Apr; 124(15):3114-3122. PubMed ID: 32208658 [TBL] [Abstract][Full Text] [Related]
28. Explicit solvent simulations of the aqueous oxidation potential and reorganization energy for neutral molecules: gas phase, linear solvent response, and non-linear response contributions. Guerard JJ; Tentscher PR; Seijo M; Samuel Arey J Phys Chem Chem Phys; 2015 Jun; 17(22):14811-26. PubMed ID: 25978135 [TBL] [Abstract][Full Text] [Related]
29. Investigation of the redox chemistry of anthraquinone derivatives using density functional theory. Bachman JE; Curtiss LA; Assary RS J Phys Chem A; 2014 Sep; 118(38):8852-60. PubMed ID: 25159500 [TBL] [Abstract][Full Text] [Related]
30. Intermolecular and intracomplex photoinduced electron transfer from planar and nonplanar metalloporphyrins to p-quinones. Kanematsu M; Naumov P; Kojima T; Fukuzumi S Chemistry; 2011 Oct; 17(44):12372-84. PubMed ID: 21954012 [TBL] [Abstract][Full Text] [Related]
31. Nonequilibrium free-energy profile of charge-transfer reaction in polarizable solvent studied using solvent-polarizable three-dimensional reference interaction-site model theory. Yamaguchi T; Yoshida N J Chem Phys; 2020 Jul; 153(3):034502. PubMed ID: 32716188 [TBL] [Abstract][Full Text] [Related]
32. Ab initio molecular dynamics simulation of the aqueous Ru2+/Ru3+ redox reaction: the Marcus perspective. Blumberger J; Sprik M J Phys Chem B; 2005 Apr; 109(14):6793-804. PubMed ID: 16851765 [TBL] [Abstract][Full Text] [Related]
33. A density functional theory based study of the electron transfer reaction at the cathode-electrolyte interface in lithium-air batteries. Kazemiabnavi S; Dutta P; Banerjee S Phys Chem Chem Phys; 2015 May; 17(17):11740-51. PubMed ID: 25868477 [TBL] [Abstract][Full Text] [Related]
34. Electron transfer reactions between copper(II) porphyrin complexes and various oxidizing reagents in acetonitrile. Inamo M; Kumagai H; Harada U; Itoh S; Iwatsuki S; Ishihara K; Takagi HD Dalton Trans; 2004 Jun; (11):1703-7. PubMed ID: 15252565 [TBL] [Abstract][Full Text] [Related]
35. Electron-transfer kinetics and electric double layer effects in nanometer-wide thin-layer cells. Fan L; Liu Y; Xiong J; White HS; Chen S ACS Nano; 2014 Oct; 8(10):10426-36. PubMed ID: 25211307 [TBL] [Abstract][Full Text] [Related]
36. Nonequilibrium solvation energy by means of constrained equilibrium thermodynamics and its application to self-exchange electron transfer reactions. Li XY; Wang QD; Wang JB; Ma JY; Fu KX; He FC Phys Chem Chem Phys; 2010 Feb; 12(6):1341-50. PubMed ID: 20119612 [TBL] [Abstract][Full Text] [Related]
37. Extension of Marcus picture for electron transfer reactions with large solvation changes. Vuilleumier R; Tay KA; Jeanmairet G; Borgis D; Boutin A J Am Chem Soc; 2012 Feb; 134(4):2067-74. PubMed ID: 22148250 [TBL] [Abstract][Full Text] [Related]
38. Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Warburton RE; Soudackov AV; Hammes-Schiffer S Chem Rev; 2022 Jun; 122(12):10599-10650. PubMed ID: 35230812 [TBL] [Abstract][Full Text] [Related]
39. Experimental resolution of the free energies of aqueous solvation contributions to ligand-protein binding: quinone-QA site interactions in the photosynthetic reaction center protein. Warncke K; Dutton PL Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2920-4. PubMed ID: 8464908 [TBL] [Abstract][Full Text] [Related]
40. Interfacial bond-breaking electron transfer in mixed water-ethylene glycol solutions: reorganization energy and interplay between different solvent modes. Ismailova O; Berezin AS; Probst M; Nazmutdinov RR J Phys Chem B; 2013 Jul; 117(29):8793-801. PubMed ID: 23768162 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]