These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36075710)

  • 21. Theory of coherent two-dimensional vibrational spectroscopy.
    Jansen TC; Saito S; Jeon J; Cho M
    J Chem Phys; 2019 Mar; 150(10):100901. PubMed ID: 30876372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrafast nonlinear coherent vibrational sum-frequency spectroscopy methods to study thermal conductance of molecules at interfaces.
    Carter JA; Wang Z; Dlott DD
    Acc Chem Res; 2009 Sep; 42(9):1343-51. PubMed ID: 19388671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coherence Spectroscopy in the Condensed Phase: Insights into Molecular Structure, Environment, and Interactions.
    Dean JC; Scholes GD
    Acc Chem Res; 2017 Nov; 50(11):2746-2755. PubMed ID: 29043773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient calculation of time- and frequency-resolved four-wave-mixing signals.
    Gelin MF; Egorova D; Domcke W
    Acc Chem Res; 2009 Sep; 42(9):1290-8. PubMed ID: 19449854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interpreting nonlinear vibrational spectroscopy with the classical mechanical analogs of double-sided Feynman diagrams.
    Noid WG; Loring RF
    J Chem Phys; 2004 Oct; 121(15):7057-69. PubMed ID: 15473771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-equilibrium dynamics from RPMD and CMD.
    Welsch R; Song K; Shi Q; Althorpe SC; Miller TF
    J Chem Phys; 2016 Nov; 145(20):204118. PubMed ID: 27908103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perturbation Approach for Computing Infrared Spectra of the Local Mode of Probe Molecules.
    Xue RJ; Grofe A; Yin H; Qu Z; Gao J; Li H
    J Chem Theory Comput; 2017 Jan; 13(1):191-201. PubMed ID: 28068771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling Non-adiabatic Dynamics in Nanoscale and Condensed Matter Systems.
    Prezhdo OV
    Acc Chem Res; 2021 Dec; 54(23):4239-4249. PubMed ID: 34756013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ab initio-based all-mode two-dimensional infrared spectroscopy of a sugar molecule.
    Wang J
    J Phys Chem B; 2007 Aug; 111(31):9193-6. PubMed ID: 17636985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classical coherent two-dimensional vibrational spectroscopy.
    Reppert M; Brumer P
    J Chem Phys; 2018 Feb; 148(6):064101. PubMed ID: 29448800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrafast vibrational dynamics of the tyrosine ring mode and its application to enkephalin insertion into phospholipid membranes as probed by two-dimensional infrared spectroscopy.
    Vinogradov I; Feng Y; Kumar SKK; Guo C; Udagawa NS; Ge NH
    J Chem Phys; 2021 Jul; 155(3):035102. PubMed ID: 34293882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-dimensional vibrational-electronic spectroscopy.
    Courtney TL; Fox ZW; Slenkamp KM; Khalil M
    J Chem Phys; 2015 Oct; 143(15):154201. PubMed ID: 26493900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum mechanical correlation functions, maximum entropy analytic continuation, and ring polymer molecular dynamics.
    Habershon S; Braams BJ; Manolopoulos DE
    J Chem Phys; 2007 Nov; 127(17):174108. PubMed ID: 17994808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-time formulation of Matsubara dynamics.
    Jung KA; Videla PE; Batista VS
    J Chem Phys; 2019 Jul; 151(3):034108. PubMed ID: 31325942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-dimensional electronic spectroscopy of molecular excitons.
    Milota F; Sperling J; Nemeth A; Mancal T; Kauffmann HF
    Acc Chem Res; 2009 Sep; 42(9):1364-74. PubMed ID: 19673525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-Resolved Sum Frequency Generation Spectroscopy: A Quantitative Comparison Between Intensity and Phase-Resolved Spectroscopy.
    Backus EHG; Cyran JD; Grechko M; Nagata Y; Bonn M
    J Phys Chem A; 2018 Mar; 122(9):2401-2410. PubMed ID: 29432016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals.
    Pérez A; Tuckerman ME; Müser MH
    J Chem Phys; 2009 May; 130(18):184105. PubMed ID: 19449906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New conditions for validity of the centroid molecular dynamics and ring polymer molecular dynamics.
    Yoshimori A
    J Chem Phys; 2008 Jun; 128(23):234105. PubMed ID: 18570489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy.
    Xiong W; Laaser JE; Mehlenbacher RD; Zanni MT
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):20902-7. PubMed ID: 22143772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.