These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36075721)

  • 1. Effects of surface rigidity and metallicity on dielectric properties and ion interactions at aqueous hydrophobic interfaces.
    Loche P; Scalfi L; Ali Amu M; Schullian O; Bonthuis DJ; Rotenberg B; Netz RR
    J Chem Phys; 2022 Sep; 157(9):094707. PubMed ID: 36075721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profile of the static permittivity tensor of water at interfaces: consequences for capacitance, hydration interaction and ion adsorption.
    Bonthuis DJ; Gekle S; Netz RR
    Langmuir; 2012 May; 28(20):7679-94. PubMed ID: 22414296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viewpoint 9--molecular structure of aqueous interfaces.
    Pohorille A; Wilson MA
    J Mol Struct; 1993; 284():271-98. PubMed ID: 11539444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-mediated ion-ion interactions are enhanced at the water vapor-liquid interface.
    Venkateshwaran V; Vembanur S; Garde S
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8729-34. PubMed ID: 24889634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.
    Bonthuis DJ; Netz RR
    J Phys Chem B; 2013 Oct; 117(39):11397-413. PubMed ID: 24063251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakdown of Linear Dielectric Theory for the Interaction between Hydrated Ions and Graphene.
    Loche P; Ayaz C; Schlaich A; Bonthuis DJ; Netz RR
    J Phys Chem Lett; 2018 Nov; 9(22):6463-6468. PubMed ID: 30382706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distance-dependent dielectric constant at the calcite/electrolyte interface: Implication for surface complexation modeling.
    Zarzycki P
    J Colloid Interface Sci; 2023 Sep; 645():752-764. PubMed ID: 37172485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.
    Rana MK; Chandra A
    J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropy in the dielectric spectrum of hydration water and its relation to water dynamics.
    Gekle S; Netz RR
    J Chem Phys; 2012 Sep; 137(10):104704. PubMed ID: 22979883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water molecule clusters measured at water/air interfaces using atomic force microscopy.
    Teschke O; de Souza EF
    Phys Chem Chem Phys; 2005 Nov; 7(22):3856-65. PubMed ID: 16358037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polar liquids at charged interfaces: A dipolar shell theory.
    de Souza JP; Kornyshev AA; Bazant MZ
    J Chem Phys; 2022 Jun; 156(24):244705. PubMed ID: 35778078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of interfacial n-octanol and 3-octanol using molecular dynamic simulations.
    Napoleon RL; Moore PB
    J Phys Chem B; 2006 Mar; 110(8):3666-73. PubMed ID: 16494422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion-specific induced fluctuations and free energetics of aqueous protein hydrophobic interfaces: toward connecting to specific-ion behaviors at aqueous liquid-vapor interfaces.
    Cui D; Ou S; Peters E; Patel S
    J Phys Chem B; 2014 May; 118(17):4490-504. PubMed ID: 24701961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dielectric function profile across the water interface through surface-specific vibrational spectroscopy and simulations.
    Chiang KY; Seki T; Yu CC; Ohto T; Hunger J; Bonn M; Nagata Y
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2204156119. PubMed ID: 36037357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of Coulomb interactions in liquid dielectrics.
    Seyedi S; Martin DR; Matyushov DV
    J Phys Condens Matter; 2019 Aug; 31(32):325101. PubMed ID: 31042681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant Axial Dielectric Response in Water-Filled Nanotubes and Effective Electrostatic Ion-Ion Interactions from a Tensorial Dielectric Model.
    Loche P; Ayaz C; Schlaich A; Uematsu Y; Netz RR
    J Phys Chem B; 2019 Dec; 123(50):10850-10857. PubMed ID: 31765168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of a sodium ion with the water liquid-vapor interface.
    Wilson MA; Pohorille A; Pratt LR
    Chem Phys; 1989; 129():209-12. PubMed ID: 11542383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-vapor interfacial properties of aqueous solutions of guanidinium and methyl guanidinium chloride: influence of molecular orientation on interface fluctuations.
    Ou S; Cui D; Patel S
    J Phys Chem B; 2013 Oct; 117(39):11719-31. PubMed ID: 23937431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.