These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 36075725)

  • 1. Characterizing protein-surface and protein-nanoparticle conjugates: Activity, binding, and structure.
    Correira JM; Handali PR; Webb LJ
    J Chem Phys; 2022 Sep; 157(9):090902. PubMed ID: 36075725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and Characterization of Biofunctionalized Inorganic Substrates.
    Dugger JW; Webb LJ
    Langmuir; 2015 Sep; 31(38):10331-40. PubMed ID: 26135514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of nanoparticle-protein conjugates.
    Aubin-Tam ME; Hamad-Schifferli K
    Biomed Mater; 2008 Sep; 3(3):034001. PubMed ID: 18689927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Physicochemical Properties of Protein in Modulating the Nanoparticle-Bio Interface.
    Dhar S; Sood V; Lohiya G; Deivendran H; Katti DS
    J Biomed Nanotechnol; 2020 Aug; 16(8):1276-1295. PubMed ID: 33397557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic Strategies to Enhance the Electrocatalytic Properties of Branched Metal Nanoparticles.
    Poerwoprajitno AR; Cheong S; Gloag L; Gooding JJ; Tilley RD
    Acc Chem Res; 2022 Jun; 55(12):1693-1702. PubMed ID: 35616935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science.
    Prochowicz D; Kornowicz A; Lewiński J
    Chem Rev; 2017 Nov; 117(22):13461-13501. PubMed ID: 29048880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical Properties of Biomolecules at the Nanomaterial Interface.
    Rodriguez-Quijada C; Sánchez-Purrà M; de Puig H; Hamad-Schifferli K
    J Phys Chem B; 2018 Mar; 122(11):2827-2840. PubMed ID: 29480722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gold standard: gold nanoparticle libraries to understand the nano-bio interface.
    Alkilany AM; Lohse SE; Murphy CJ
    Acc Chem Res; 2013 Mar; 46(3):650-61. PubMed ID: 22732239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chemistry of the sulfur-gold interface: in search of a unified model.
    Pensa E; Cortés E; Corthey G; Carro P; Vericat C; Fonticelli MH; Benítez G; Rubert AA; Salvarezza RC
    Acc Chem Res; 2012 Aug; 45(8):1183-92. PubMed ID: 22444437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-protein corona complex: understanding multiple interactions between environmental factors, corona formation, and biological activity.
    Tomak A; Cesmeli S; Hanoglu BD; Winkler D; Oksel Karakus C
    Nanotoxicology; 2021 Dec; 15(10):1331-1357. PubMed ID: 35061957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biospecific protein immobilization for rapid analysis of weak protein interactions using self-interaction nanoparticle spectroscopy.
    Bengali AN; Tessier PM
    Biotechnol Bioeng; 2009 Oct; 104(2):240-50. PubMed ID: 19489026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Compositional Analysis of Nanoparticle-polymer Composites Using Direct Fluorescence Imaging.
    Crick CR; Noimark S; Peveler WJ; Bear JC; Ivanov AP; Edel JB; Parkin IP
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the nanoparticle-protein interface: applications and possibilities.
    Rana S; Yeh YC; Rotello VM
    Curr Opin Chem Biol; 2010 Dec; 14(6):828-34. PubMed ID: 21035376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein Materials Engineering with DNA.
    McMillan JR; Hayes OG; Winegar PH; Mirkin CA
    Acc Chem Res; 2019 Jul; 52(7):1939-1948. PubMed ID: 31199115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal Nanoparticles Immobilized on Molecularly Modified Surfaces: Versatile Catalytic Systems for Controlled Hydrogenation and Hydrogenolysis.
    Bordet A; Leitner W
    Acc Chem Res; 2021 May; 54(9):2144-2157. PubMed ID: 33822579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small Surface, Big Effects, and Big Challenges: Toward Understanding Enzymatic Activity at the Inorganic Nanoparticle-Substrate Interface.
    Algar WR; Jeen T; Massey M; Peveler WJ; Asselin J
    Langmuir; 2019 Jun; 35(22):7067-7091. PubMed ID: 30415548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles.
    Heuer-Jungemann A; Feliu N; Bakaimi I; Hamaly M; Alkilany A; Chakraborty I; Masood A; Casula MF; Kostopoulou A; Oh E; Susumu K; Stewart MH; Medintz IL; Stratakis E; Parak WJ; Kanaras AG
    Chem Rev; 2019 Apr; 119(8):4819-4880. PubMed ID: 30920815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide Binding for Bio-Based Nanomaterials.
    Bedford NM; Munro CJ; Knecht MR
    Methods Enzymol; 2016; 580():581-98. PubMed ID: 27586350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.