These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36075741)

  • 1. Non-iterative method for constructing valence antibonding molecular orbitals and a molecule-adapted minimum basis.
    Aldossary A; Head-Gordon M
    J Chem Phys; 2022 Sep; 157(9):094102. PubMed ID: 36075741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valence Virtual Orbitals: An Unambiguous ab Initio Quantification of the LUMO Concept.
    Schmidt MW; Hull EA; Windus TL
    J Phys Chem A; 2015 Oct; 119(41):10408-27. PubMed ID: 26430954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecule intrinsic minimal basis sets. II. Bonding analyses for Si4H6 and Si2 to Si10.
    Lu WC; Wang CZ; Schmidt MW; Bytautas L; Ho KM; Ruedenberg K
    J Chem Phys; 2004 Feb; 120(6):2638-51. PubMed ID: 15268407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive analysis of molecule-intrinsic quasi-atomic, bonding, and correlating orbitals. I. Hartree-Fock wave functions.
    West AC; Schmidt MW; Gordon MS; Ruedenberg K
    J Chem Phys; 2013 Dec; 139(23):234107. PubMed ID: 24359352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comprehensive Analysis in Terms of Molecule-Intrinsic, Quasi-Atomic Orbitals. II. Strongly Correlated MCSCF Wave Functions.
    West AC; Schmidt MW; Gordon MS; Ruedenberg K
    J Phys Chem A; 2015 Oct; 119(41):10360-7. PubMed ID: 26376320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local Hartree-Fock orbitals using a three-level optimization strategy for the energy.
    Høyvik IM; Jansik B; Kristensen K; Jørgensen P
    J Comput Chem; 2013 Jun; 34(15):1311-20. PubMed ID: 23456899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals.
    Lu WC; Wang CZ; Schmidt MW; Bytautas L; Ho KM; Ruedenberg K
    J Chem Phys; 2004 Feb; 120(6):2629-37. PubMed ID: 15268406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Construction of the Initial Orbitals for Efficient Generalized Valence Bond Calculations of Large Systems.
    Wang Q; Zou J; Xu E; Pulay P; Li S
    J Chem Theory Comput; 2019 Jan; 15(1):141-153. PubMed ID: 30481019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-Atomic Bond Analyses in the Sixth Period: I. Relativistic Accurate Atomic Minimal Basis Sets for the Elements Cesium to Radon.
    Schoendorff G; West AC; Schmidt MW; Ruedenberg K; Gordon MS
    J Phys Chem A; 2019 Jun; 123(25):5242-5248. PubMed ID: 31199630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Characterization of Molecular Bonding Structures by ab initio Quasi-Atomic Orbital Analyses.
    West AC; Duchimaza-Heredia JJ; Gordon MS; Ruedenberg K
    J Phys Chem A; 2017 Nov; 121(46):8884-8898. PubMed ID: 29135255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SparseMaps--A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory.
    Guo Y; Sivalingam K; Valeev EF; Neese F
    J Chem Phys; 2016 Mar; 144(9):094111. PubMed ID: 26957161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nature of partial sigma bond.
    Nguyen LH; Truong TN
    J Comput Chem; 2024 Jun; ():. PubMed ID: 38838302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bonding analysis using localized relativistic orbitals: water, the ultrarelativistic case and the heavy homologues H2X (X = Te, Po, eka-Po).
    Dubillard S; Rota JB; Saue T; Faegri K
    J Chem Phys; 2006 Apr; 124(15):154307. PubMed ID: 16674226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong orbital interaction in a weak CH-π hydrogen bonding system.
    Li J; Zhang RQ
    Sci Rep; 2016 Mar; 6():22304. PubMed ID: 26927609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finding Valence Antibonding Levels while Avoiding Rydberg, Pseudo-continuum, and Dipole-Bound Orbitals.
    Anusiewicz I; Skurski P; Simons J
    J Am Chem Soc; 2022 Jun; 144(25):11348-11363. PubMed ID: 35699697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Bond Order of C2 from a Strictly N-Representable Natural Orbital Energy Functional Perspective.
    Piris M; Lopez X; Ugalde JM
    Chemistry; 2016 Mar; 22(12):4109-15. PubMed ID: 26822104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition-Metal Chemistry of the Heavier Alkaline Earth Atoms Ca, Sr, and Ba.
    Zhou M; Frenking G
    Acc Chem Res; 2021 Aug; 54(15):3071-3082. PubMed ID: 34264062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selected Columns of the Density Matrix in an Atomic Orbital Basis I: An Intrinsic and Non-iterative Orbital Localization Scheme for the Occupied Space.
    Fuemmeler EG; Damle A; DiStasio RA
    J Chem Theory Comput; 2023 Dec; 19(23):8572-8586. PubMed ID: 37944142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local N-electron valence state perturbation theory using pair-natural orbitals based on localized virtual molecular orbitals.
    Uemura K; Saitow M; Ishimaru T; Yanai T
    J Chem Phys; 2023 Apr; 158(15):. PubMed ID: 37094010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.
    Sayfutyarova ER; Sun Q; Chan GK; Knizia G
    J Chem Theory Comput; 2017 Sep; 13(9):4063-4078. PubMed ID: 28731706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.