These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36075932)

  • 1. Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst.
    Guo S; Wu Y; Wang C; Gao Y; Li M; Zhang B; Liu C
    Nat Commun; 2022 Sep; 13(1):5297. PubMed ID: 36075932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designed Nanomaterials for Electrocatalytic Organic Hydrogenation Using Water as the Hydrogen Source.
    Liu C; Wu Y; Zhao B; Zhang B
    Acc Chem Res; 2023 Jul; 56(13):1872-1883. PubMed ID: 37316974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water.
    Wu Y; Liu C; Wang C; Yu Y; Shi Y; Zhang B
    Nat Commun; 2021 Jun; 12(1):3881. PubMed ID: 34162851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular o-quinone catalyst system for dehydrogenation of tetrahydroquinolines under ambient conditions.
    Wendlandt AE; Stahl SS
    J Am Chem Soc; 2014 Aug; 136(34):11910-3. PubMed ID: 25109345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly enantioselective hydrogenation of quinolines using phosphine-free chiral cationic ruthenium catalysts: scope, mechanism, and origin of enantioselectivity.
    Wang T; Zhuo LG; Li Z; Chen F; Ding Z; He Y; Fan QH; Xiang J; Yu ZX; Chan AS
    J Am Chem Soc; 2011 Jun; 133(25):9878-91. PubMed ID: 21574550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FePO
    Wei H; Gao Z; Cao L; Li K; Yan X; Liu T; Zhu M; Huang F; Fang X; Lin J
    Nanoscale; 2023 Jan; 15(3):1422-1430. PubMed ID: 36594603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Selective Electrocatalytic Olefin Hydrogenation in Aqueous Solution.
    Xing C; Xue Y; Zheng X; Gao Y; Chen S; Li Y
    Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202310722. PubMed ID: 37642147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the Catalytic Performance of Cobalt Nanoparticles by Tungsten Doping for Efficient and Selective Hydrogenation of Quinolines under Mild Conditions.
    Puche M; Liu L; Concepción P; Sorribes I; Corma A
    ACS Catal; 2021 Jul; 11(13):8197-8210. PubMed ID: 35633841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions.
    Zhang G; Vasudevan KV; Scott BL; Hanson SK
    J Am Chem Soc; 2013 Jun; 135(23):8668-81. PubMed ID: 23713752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric Hydrogenation of Quinoline Derivatives Catalyzed by Cationic Transition Metal Complexes of Chiral Diamine Ligands: Scope, Mechanism and Catalyst Recycling.
    Luo YE; He YM; Fan QH
    Chem Rec; 2016 Dec; 16(6):2693-2707. PubMed ID: 27555530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Half-Sandwich Ruthenium Complexes for One-Pot Synthesis of Quinolines and Tetrahydroquinolines: Diverse Catalytic Activity in the Coupled Cyclization and Hydrogenation Process.
    Yun XJ; Zhu JW; Jin Y; Deng W; Yao ZJ
    Inorg Chem; 2020 Jun; 59(11):7841-7851. PubMed ID: 32396339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-Doped Carbon Supported Nanocobalt Catalyst for Hydrogen-Transfer Dearomative Coupling of Quinolinium Salts and Tetrahydroquinolines.
    Xu S; Cai Z; Liao C; Shi J; Wen T; Xie F; Zhu Z; Chen X
    Org Lett; 2022 Jul; 24(28):5209-5213. PubMed ID: 35833649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile construction of three contiguous stereogenic centers via dynamic kinetic resolution in asymmetric transfer hydrogenation of quinolines.
    Chen MW; Cai XF; Chen ZP; Shi L; Zhou YG
    Chem Commun (Camb); 2014 Oct; 50(83):12526-9. PubMed ID: 25196398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic Effect in a Ruthenium Catalyst Designed in Nanoporous N-Functionalized Carbon for Efficient Hydrogenation of Heteroarenes.
    Chandra D; Saini S; Bhattacharya S; Bhaumik A; Kamata K; Hara M
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52668-52677. PubMed ID: 33185087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA-15 Catalyst.
    Audemar M; Ciotonea C; De Oliveira Vigier K; Royer S; Ungureanu A; Dragoi B; Dumitriu E; Jérôme F
    ChemSusChem; 2015 Jun; 8(11):1885-91. PubMed ID: 25891431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Catalytic Hydrogenation of Heteroarenes with N-Graphene-Modified Cobalt Nanoparticles (Co3O4-Co/NGr@α-Al2O3).
    Chen F; Surkus AE; He L; Pohl MM; Radnik J; Topf C; Junge K; Beller M
    J Am Chem Soc; 2015 Sep; 137(36):11718-24. PubMed ID: 26293483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translating aqueous CO
    Wang XS; Yang JY
    Chem Commun (Camb); 2023 Jan; 59(3):338-341. PubMed ID: 36515080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liberating N-CNTs Confined Highly Dispersed CoN
    Gong W; Yuan Q; Chen C; Lv Y; Lin Y; Liang C; Wang G; Zhang H; Zhao H
    Adv Mater; 2019 Dec; 31(49):e1906051. PubMed ID: 31621962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogenic Synthesis of Gold Nanoparticles on a Green Support as a Reusable Catalyst for the Hydrogenation of Nitroarene and Quinoline.
    Adeyeye Nafiu S; Shaheen Shah S; Aziz A; Shaikh MN
    Chem Asian J; 2021 Jul; 16(14):1956-1966. PubMed ID: 34043274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cobalt-Polypyrrole/Melamine-Derived Co-N@NC Catalysts for Efficient Base-Free Formic Acid Dehydrogenation and Formylation of Quinolines through Transfer Hydrogenation.
    Leng Y; Du S; Feng G; Sang X; Jiang P; Li H; Wang D
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):474-483. PubMed ID: 31802662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.