These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3607610)

  • 1. Polysaccharide-degrading enzymes formed by three species of anaerobic rumen fungi grown on a range of carbohydrate substrates.
    Williams AG; Orpin CG
    Can J Microbiol; 1987 May; 33(5):418-26. PubMed ID: 3607610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycoside hydrolase enzymes present in the zoospore and vegetative growth stages of the rumen fungi Neocallimastix patriciarum, Piromonas communis, and an unidentified isolate, grown on a range of carbohydrates.
    Williams AG; Orpin CG
    Can J Microbiol; 1987 May; 33(5):427-34. PubMed ID: 3607611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycoside and polysaccharide hydrolase activity of the rumen anaerobic fungus Caecomyces communis (Sphaeromonas communis SENSU ORPIN) at early and final stages of the developmental cycle.
    Gerbi C; Bata J; Breton A; Prensier G
    Curr Microbiol; 1996 May; 32(5):256-9. PubMed ID: 8857272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosidases of the rumen anaerobic fungus Neocallimastix frontalis grown on cellulosic substrates.
    Pearce PD; Bauchop T
    Appl Environ Microbiol; 1985 May; 49(5):1265-9. PubMed ID: 4004240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation products and plant cell wall-degrading enzymes produced by monocentric and polycentric anaerobic ruminal fungi.
    Borneman WS; Akin DE; Ljungdahl LG
    Appl Environ Microbiol; 1989 May; 55(5):1066-73. PubMed ID: 2757372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery and characterization of family 39 glycoside hydrolases from rumen anaerobic fungi with polyspecific activity on rare arabinosyl substrates.
    Jones DR; Uddin MS; Gruninger RJ; Pham TTM; Thomas D; Boraston AB; Briggs J; Pluvinage B; McAllister TA; Forster RJ; Tsang A; Selinger LB; Abbott DW
    J Biol Chem; 2017 Jul; 292(30):12606-12620. PubMed ID: 28588026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar and polysaccharide fermentation by rumen anaerobic fungi from Australia, Britain and New Zealand.
    Phillips MW; Gordon GL
    Biosystems; 1988; 21(3-4):377-83. PubMed ID: 3395691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postprandial variations in the activity of polysaccharide-degrading enzymes in microbial populations from the digesta solids and liquor fractions of rumen contents.
    Williams AG; Withers SE; Strachan NH
    J Appl Bacteriol; 1989 Jan; 66(1):15-26. PubMed ID: 2722713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Genomics of Rumen
    Palevich N; Kelly WJ; Leahy SC; Denman S; Altermann E; Rakonjac J; Attwood GT
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31653790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel polysaccharide hydrolase cDNA (celD) from Neocallimastix patriciarum encoding three multi-functional catalytic domains with high endoglucanase, cellobiohydrolase and xylanase activities.
    Xue GP; Gobius KS; Orpin CG
    J Gen Microbiol; 1992 Nov; 138(11):2397-403. PubMed ID: 1479358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location by fluorescence microscopy of glycosidases and a xylanase in the anaerobic gut fungi Caecomyces communis, Neocallimastix frontalis, and Piromyces rhizinflata.
    Breton A; Gaillard-Martinie B; Gerbi C; Gomez de Ségura B; Durand R; Kherratia B
    Curr Microbiol; 1995 Oct; 31(4):224-7. PubMed ID: 7549768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular polysaccharide-degrading proteome of Butyrivibrio proteoclasticus.
    Dunne JC; Li D; Kelly WJ; Leahy SC; Bond JJ; Attwood GT; Jordan TW
    J Proteome Res; 2012 Jan; 11(1):131-42. PubMed ID: 22060546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass degrading enzymes from anaerobic rumen fungi.
    Chen H; Li XL; Ljungdahl LG
    SAAS Bull Biochem Biotechnol; 1995; 8():1-6. PubMed ID: 7546571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between rumen anaerobic fungi and ciliate protozoa in the degradation of rice straw cell walls.
    Widyastuti Y; Newbold CJ; Stewart CS; Orskov ER
    Lett Appl Microbiol; 1995 Jan; 20(1):61-4. PubMed ID: 7765871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biology, fiber-degradation, and enzymology of anaerobic zoosporic fungi.
    Wubah DA; Akin DE; Borneman WS
    Crit Rev Microbiol; 1993; 19(2):99-115. PubMed ID: 7687843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic fungi and their cellulolytic and xylanolytic enzymes.
    Teunissen MJ; Op den Camp HJ
    Antonie Van Leeuwenhoek; 1993 Jan; 63(1):63-76. PubMed ID: 8480994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases.
    Huang Y; Busk PK; Lange L
    Enzyme Microb Technol; 2015 Jun; 73-74():9-19. PubMed ID: 26002499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-(4-O-methyl)-D-glucuronidase activity produced by the rumen anaerobic fungus Piromonas communis: a study of selected properties.
    Wood TM; Wilson CA
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):893-900. PubMed ID: 7576556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pectinolytic enzymes of anaerobic fungi.
    Kopecný J; Hodrová B
    Lett Appl Microbiol; 1995 May; 20(5):312-6. PubMed ID: 7766233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polysaccharide hydrolase production by the rumen fungus Caecomyces communis.
    Gerbi C; Bata J; Breton A; Prensier G
    Res Microbiol; 1996 Jun; 147(5):363-70. PubMed ID: 8763622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.