These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 36076332)
21. Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy. Maynez-Rojas MA; Casanova-González E; Ruvalcaba-Sil JL Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 178():239-250. PubMed ID: 28199929 [TBL] [Abstract][Full Text] [Related]
22. A survey of extraction solvents in the forensic analysis of textile dyes. Groves E; Palenik CS; Palenik S Forensic Sci Int; 2016 Nov; 268():139-144. PubMed ID: 27776278 [TBL] [Abstract][Full Text] [Related]
23. Patch testing with a textile dye mix and its constituents in a baseline series. Ryberg K; Goossens A; Isaksson M; Gruvberger B; Zimerson E; Bruze M Dermatitis; 2010; 21(1):49-56. PubMed ID: 20137739 [TBL] [Abstract][Full Text] [Related]
24. Determination of disperse dyes on polyester fibers by UHPLC-Orbitrap MS. Hu C; Liu Z; Mei H; Guo H; Sun Z; Li Y; Song G; Huang J; Zhu J Sci Justice; 2023 Jan; 63(1):83-89. PubMed ID: 36631185 [TBL] [Abstract][Full Text] [Related]
25. Silver colloidal pastes for dye analysis of reference and historical textile fibers using direct, extractionless, non-hydrolysis surface-enhanced Raman spectroscopy. Idone A; Gulmini M; Henry AI; Casadio F; Chang L; Appolonia L; Van Duyne RP; Shah NC Analyst; 2013 Oct; 138(20):5895-903. PubMed ID: 23905159 [TBL] [Abstract][Full Text] [Related]
26. Identification of natural dyes on laboratory-dyed wool and ancient wool, silk, and cotton fibers using attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy and Fourier transform Raman spectroscopy. Bruni S; De Luca E; Guglielmi V; Pozzi F Appl Spectrosc; 2011 Sep; 65(9):1017-23. PubMed ID: 21929856 [TBL] [Abstract][Full Text] [Related]
28. Chronic generalized eczema caused by multiple dye sensitization. Mathelier-Fusade P; Aïssaoui M; Chabane MH; Mounedji N; Leynadier F Am J Contact Dermat; 1996 Dec; 7(4):224-5. PubMed ID: 8955485 [TBL] [Abstract][Full Text] [Related]
29. Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent. Phalakornkule C; Polgumhang S; Tongdaung W; Karakat B; Nuyut T J Environ Manage; 2010; 91(4):918-26. PubMed ID: 20042267 [TBL] [Abstract][Full Text] [Related]
30. Direct analysis of textile dyes from trace fibers by automated microfluidics extraction system coupled with Q-TOF mass spectrometer for forensic applications. Sultana N; Gunning S; Furst SJ; Garrard KP; Dow TA; Vinueza NR Forensic Sci Int; 2018 Aug; 289():67-74. PubMed ID: 29859401 [TBL] [Abstract][Full Text] [Related]
31. Raman, SERS and DFT analysis of the natural red dyes of Japanese origin alkannin and shikonin. Cañamares MV; Mieites-Alonso MG; Leona M Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120382. PubMed ID: 34543990 [TBL] [Abstract][Full Text] [Related]
32. Raman spectroscopy and the forensic analysis of black/grey and blue cotton fibres Part 1: investigation of the effects of varying laser wavelength. Thomas J; Buzzini P; Massonnet G; Reedy B; Roux C Forensic Sci Int; 2005 Sep; 152(2-3):189-97. PubMed ID: 15978344 [TBL] [Abstract][Full Text] [Related]
33. Real-time monitoring of multicomponent reactive dye adsorption on cotton fabrics by Raman spectroscopy. Dai Y; Yang B; Ding Y; Xu H; Wang B; Zhang L; Chen Z; Sui X; Feng X; Zhong Y; Mao Z Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118051. PubMed ID: 31958601 [TBL] [Abstract][Full Text] [Related]
34. Nondestructive Total Excitation-Emission Fluorescence Microscopy Combined with Multi-Way Chemometric Analysis for Visually Indistinguishable Single Fiber Discrimination. Muñoz de la Peña A; Mujumdar N; Heider EC; Goicoechea HC; Muñoz de la Peña D; Campiglia AD Anal Chem; 2016 Mar; 88(5):2967-75. PubMed ID: 26861578 [TBL] [Abstract][Full Text] [Related]
35. In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS). Kurouski D; Van Duyne RP Anal Chem; 2015 Mar; 87(5):2901-6. PubMed ID: 25635868 [TBL] [Abstract][Full Text] [Related]
36. Characteristic dye absorption peaks found in the FTIR spectra of coloured acrylic fibres. Grieve MC; Griffin RM; Malone R Sci Justice; 1998; 38(1):27-37. PubMed ID: 9624811 [TBL] [Abstract][Full Text] [Related]
37. Differentiation of aged fibers by Raman spectroscopy and multivariate data analysis. Bianchi F; Riboni N; Trolla V; Furlan G; Avantaggiato G; Iacobellis G; Careri M Talanta; 2016 Jul; 154():467-73. PubMed ID: 27154701 [TBL] [Abstract][Full Text] [Related]
38. Mild extraction methods using aqueous glucose solution for the analysis of natural dyes in textile artefacts dyed with Dyer's madder (Rubia tinctorum L.). Ford L; Henderson RL; Rayner CM; Blackburn RS J Chromatogr A; 2017 Mar; 1487():36-46. PubMed ID: 28131591 [TBL] [Abstract][Full Text] [Related]
39. Surface-Enhanced Raman Analysis of Underlaying Colorants on Redyed Hair. Esparza I; Wang R; Kurouski D Anal Chem; 2019 Jun; 91(11):7313-7318. PubMed ID: 31055931 [TBL] [Abstract][Full Text] [Related]
40. Recommendation to include a textile dye mix in the European baseline series. Isaksson M; Ryberg K; Goossens A; Bruze M Contact Dermatitis; 2015 Jul; 73(1):15-20. PubMed ID: 25925831 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]