These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 36076429)
1. Effect of caffeic acid esters on antioxidant activity and oxidative stability of sunflower oil: Molecular simulation and experiments. Lu L; Luo K; Luan Y; Zhao M; Wang R; Zhao X; Wu S Food Res Int; 2022 Oct; 160():111760. PubMed ID: 36076429 [TBL] [Abstract][Full Text] [Related]
2. Effects of different ester chains on the antioxidant activity of caffeic acid. Zheng YZ; Deng G; Guo R; Fu ZM; Chen DF Bioorg Chem; 2020 Dec; 105():104341. PubMed ID: 33068815 [TBL] [Abstract][Full Text] [Related]
3. The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines. Sirota R; Gibson D; Kohen R Redox Biol; 2015; 4():48-59. PubMed ID: 25498967 [TBL] [Abstract][Full Text] [Related]
4. Effects of phenolic propyl esters on the oxidative stability of refined sunflower oil. Silva FA; Borges F; Ferreira MA J Agric Food Chem; 2001 Aug; 49(8):3936-41. PubMed ID: 11513692 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and Evaluation of Antioxidant Activities of Novel Hydroxyalkyl Esters and Bis-Aryl Esters Based on Sinapic and Caffeic Acids. Laguna O; Durand E; Baréa B; Dauguet S; Fine F; Villeneuve P; Lecomte J J Agric Food Chem; 2020 Sep; 68(35):9308-9318. PubMed ID: 32786829 [TBL] [Abstract][Full Text] [Related]
6. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Garrido J; Gaspar A; Garrido EM; Miri R; Tavakkoli M; Pourali S; Saso L; Borges F; Firuzi O Biochimie; 2012 Apr; 94(4):961-7. PubMed ID: 22210493 [TBL] [Abstract][Full Text] [Related]
7. A direct correlation between the antioxidant efficiencies of caffeic acid and its alkyl esters and their concentrations in the interfacial region of olive oil emulsions. The pseudophase model interpretation of the "cut-off" effect. Costa M; Losada-Barreiro S; Paiva-Martins F; Bravo-Díaz C; Romsted LS Food Chem; 2015 May; 175():233-42. PubMed ID: 25577075 [TBL] [Abstract][Full Text] [Related]
8. Antioxidant effect of mono- and dihydroxyphenols in sunflower oil with different levels of naturally present tocopherols. Hrádková I; Merkl R; Smidrkal J; Kyselka J; Filip V Eur J Lipid Sci Technol; 2013 Jul; 115(7):747-755. PubMed ID: 23997655 [TBL] [Abstract][Full Text] [Related]
9. Effects of natural antioxidants on the oxidative stability of Eucommia ulmoides seed oil: Experimental and molecular simulation investigations. Ruan L; Lu L; Zhao X; Xiong W; Xu H; Wu S Food Chem; 2022 Jul; 383():132640. PubMed ID: 35413767 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic Synthesis of Lipophilic Esters of Phenolic Compounds, Evaluation of Their Antioxidant Activity and Effect on the Oxidative Stability of Selected Oils. Zieniuk B; Groborz K; Wołoszynowska M; Ratusz K; Białecka-Florjańczyk E; Fabiszewska A Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33669574 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and antioxidant properties of caffeic acid corn bran arabinoxylan esters. Li Y; Zhu Y; Liang R; Yang C Int J Cosmet Sci; 2017 Aug; 39(4):402-410. PubMed ID: 28094854 [TBL] [Abstract][Full Text] [Related]
12. Effects of gallic acid alkyl esters and their combinations with other antioxidants on oxidative stability of DHA algae oil. Shen Y; Guo C; Lu T; Ding XY; Zhao MT; Zhang M; Liu HL; Song L; Zhou DY Food Res Int; 2021 May; 143():110280. PubMed ID: 33992380 [TBL] [Abstract][Full Text] [Related]
13. Lipase-catalysed synthesis of mono- and di-acyl esters of glyceryl caffeate in propylene carbonate and their antioxidant properties in tuna oil. Cumming H; Marshall SN J Biotechnol; 2021 Jan; 325():217-225. PubMed ID: 33098933 [TBL] [Abstract][Full Text] [Related]
14. Effect of natural polyphenol on the oxidative stability of pecan oil. Zhang YY; Zhang F; Thakur K; Ci AT; Wang H; Zhang JG; Wei ZJ Food Chem Toxicol; 2018 Sep; 119():489-495. PubMed ID: 28988136 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and Application of a New Amphiphilic Antioxidant. Soliman HM; Arafat SM; Basuny AM; Shattory YE J Oleo Sci; 2017 Nov; 66(11):1263-1271. PubMed ID: 29021490 [TBL] [Abstract][Full Text] [Related]
16. Probing the structure-antioxidant activity relationships of four cinnamic acids porous starch esters. Li H; Ma Y; Gao X; Chen G; Wang Z Carbohydr Polym; 2021 Mar; 256():117428. PubMed ID: 33483017 [TBL] [Abstract][Full Text] [Related]
17. Interaction between caffeic acid/caffeic acid phenethyl ester and micellar casein. Qin J; Yang M; Wang Y; Wa W; Zheng J Food Chem; 2021 Jul; 349():129154. PubMed ID: 33556721 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and Biological Evaluation of New Natural Phenolic (2E,4E,6E)-Octa-2,4,6-trienoic Esters. Gandolfi R; Contini A; Pinto D; Marzani B; Pandini S; Nava D; Pini E Chem Biodivers; 2017 Dec; 14(12):. PubMed ID: 28902448 [TBL] [Abstract][Full Text] [Related]
19. Improvement of polyphenol properties upon glucosylation in a UV-induced skin cell ageing model. Nadim M; Auriol D; Lamerant-FayeL N; Lefèvre F; Dubanet L; Redziniak G; Kieda C; Grillon C Int J Cosmet Sci; 2014 Dec; 36(6):579-87. PubMed ID: 25196711 [TBL] [Abstract][Full Text] [Related]
20. Interactions between α-tocopherol and rosmarinic acid and its alkyl esters in emulsions: synergistic, additive, or antagonistic effect? Panya A; Kittipongpittaya K; Laguerre M; Bayrasy C; Lecomte J; Villeneuve P; McClements DJ; Decker EA J Agric Food Chem; 2012 Oct; 60(41):10320-30. PubMed ID: 22988974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]