BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36076856)

  • 1. Mechanism of Inosine Monophosphate Degradation by Specific Spoilage Organism from Grass Carp in Fish Juice System.
    Li D; Zhuang S; Peng Y; Tan Y; Hong H; Luo Y
    Foods; 2022 Sep; 11(17):. PubMed ID: 36076856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of microorganisms in the degradation of adenosine triphosphate (ATP) in chill-stored common carp (Cyprinus carpio) fillets.
    Li D; Zhang L; Song S; Wang Z; Kong C; Luo Y
    Food Chem; 2017 Jun; 224():347-352. PubMed ID: 28159278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid degradation and related quality changes caused by common spoilage bacteria in chill-stored grass carp (Ctenopharyngodon idella).
    Zhuang S; Tian L; Liu Y; Wang L; Hong H; Luo Y
    Food Chem; 2023 Jan; 399():133989. PubMed ID: 36041337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of nucleotide and enzyme degradation in haddock (
    Karim NU; Kennedy JT; Linton M; Patterson M; Watson S; Gault N
    PeerJ; 2019; 7():e7527. PubMed ID: 31523503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of inosine monophosphate and its degradation products during aging of pork of different qualities in relation to basic taste and retronasal flavor perception of the meat.
    Tikk M; Tikk K; Tørngren MA; Meinert L; Aaslyng MD; Karlsson AH; Andersen HJ
    J Agric Food Chem; 2006 Oct; 54(20):7769-77. PubMed ID: 17002451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of the roles of spoilage bacteria in degrading grass carp proteins during chilled storage: A combined metagenomic and metabolomic approach.
    Zhuang S; Tan Y; Hong H; Li D; Zhang L; Luo Y
    Food Res Int; 2022 Feb; 152():110926. PubMed ID: 35181097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of bacteria in the biochemical changes of chill-stored bighead carp (Aristichthys nobilis): Proteins degradation, biogenic amines accumulation, volatiles production, and nucleotides catabolism.
    Liu X; Huang Z; Jia S; Zhang J; Li K; Luo Y
    Food Chem; 2018 Jul; 255():174-181. PubMed ID: 29571464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of fish protein degradation caused by grass carp spoilage bacteria: A bottom-up exploration from the molecular level, muscle microstructure level, to related quality changes.
    Zhuang S; Liu Y; Gao S; Tan Y; Hong H; Luo Y
    Food Chem; 2023 Mar; 403():134309. PubMed ID: 36191413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical changes induced by dominant bacteria in chill-stored silver carp (Hypophthalmichthys molitrix) and GC-IMS identification of volatile organic compounds.
    Jia S; Li Y; Zhuang S; Sun X; Zhang L; Shi J; Hong H; Luo Y
    Food Microbiol; 2019 Dec; 84():103248. PubMed ID: 31421785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a biosensor for assaying postmortem nucleotide degradation in fish tissues.
    Mulchandani A; Male KB; Luong JH
    Biotechnol Bioeng; 1990 Mar; 35(7):739-45. PubMed ID: 18592571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic fate of hypoxanthine and inosine in cultured cardiomyocytes.
    Zoref-Shani E; Bromberg Y; Shirin C; Sidi Y; Sperling O
    J Mol Cell Cardiol; 1992 Feb; 24(2):183-9. PubMed ID: 1583701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme sensors for determination of fish freshness.
    Volpe G; Mascini M
    Talanta; 1996 Feb; 43(2):283-9. PubMed ID: 18966489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of microbial spoilage of grass carp (Ctenopharyngodon idellus) fillets with a chitosan-based coating during refrigerated storage.
    Yu D; Regenstein JM; Zang J; Jiang Q; Xia W; Xu Y
    Int J Food Microbiol; 2018 Nov; 285():61-68. PubMed ID: 30031352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of two non-synonymous ecto-5'-nucleotidase variants on the genetic architecture of inosine 5'-monophosphate (IMP) and its degradation products in Japanese Black beef.
    Uemoto Y; Ohtake T; Sasago N; Takeda M; Abe T; Sakuma H; Kojima T; Sasaki S
    BMC Genomics; 2017 Nov; 18(1):874. PubMed ID: 29132308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic determination of hypoxanthine in fish samples as a freshness indicator using the CUPRAC colorimetric sensor.
    Avan AN; Karakaş Ö; Demirci-Çekiç S; Apak R
    Enzyme Microb Technol; 2023 Jan; 162():110137. PubMed ID: 36274425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of phytic acid and lysozyme on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets stored at 4 °C.
    Sun X; Hong H; Jia S; Liu Y; Luo Y
    Food Microbiol; 2020 Apr; 86():103313. PubMed ID: 31703873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional identification of
    Zhao W; Cai Z; Wei C; Ma X; Yu B; Fu X; Zhang T; Gu Y; Zhang J
    Front Vet Sci; 2023; 10():1276582. PubMed ID: 38164393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of edible chitosan-based coatings on flavor quality of raw grass carp (Ctenopharyngodon idellus) fillets during refrigerated storage.
    Yu D; Xu Y; Regenstein JM; Xia W; Yang F; Jiang Q; Wang B
    Food Chem; 2018 Mar; 242():412-420. PubMed ID: 29037708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paper-Based Enzyme Biosensor for One-Step Detection of Hypoxanthine in Fresh and Degraded Fish.
    Mustafa F; Andreescu S
    ACS Sens; 2020 Dec; 5(12):4092-4100. PubMed ID: 33321038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Proteomics Reveals the Spoilage-Related Factors of
    Yi Z; Xie J
    Front Microbiol; 2021; 12():740482. PubMed ID: 34925259
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.