These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36076861)

  • 21. Real-time reverse-transcriptase polymerase chain reaction for the rapid detection of Salmonella using invA primers.
    D'Souza DH; Critzer FJ; Golden DA
    Foodborne Pathog Dis; 2009 Nov; 6(9):1097-106. PubMed ID: 19715427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Live/dead real-time polymerase chain reaction to assess new therapies against dental plaque-related pathologies.
    Loozen G; Boon N; Pauwels M; Quirynen M; Teughels W
    Mol Oral Microbiol; 2011 Aug; 26(4):253-61. PubMed ID: 21729246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of a Viability PCR Method for the Detection of Listeria monocytogenes in Food Samples.
    Agustí G; Fittipaldi M; Codony F
    Curr Microbiol; 2018 Jun; 75(6):779-785. PubMed ID: 29435612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced diagnostic methods for identification of bacterial foodborne pathogens: contemporary and upcoming challenges.
    Panwar S; Duggirala KS; Yadav P; Debnath N; Yadav AK; Kumar A
    Crit Rev Biotechnol; 2023 Dec; 43(7):982-1000. PubMed ID: 35994308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens.
    Li Y; Fan P; Zhou S; Zhang L
    Microb Pathog; 2017 Jun; 107():54-61. PubMed ID: 28323152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biotin-exposure-based immunomagnetic separation coupled with nucleic acid lateral flow biosensor for visibly detecting viable Listeria monocytogenes.
    Li F; Li F; Luo D; Lai W; Xiong Y; Xu H
    Anal Chim Acta; 2018 Aug; 1017():48-56. PubMed ID: 29534795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of viable periodontal pathogens by reverse transcription quantitative polymerase chain reaction.
    Polonyi M; Prenninger N; Arweiler NB; Haririan H; Winklehner P; Kierstein S
    J Periodontal Res; 2013 Oct; 48(5):671-6. PubMed ID: 23441836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitive detection of foodborne pathogens based on CRISPR-Cas13a.
    Gao S; Liu J; Li Z; Ma Y; Wang J
    J Food Sci; 2021 Jun; 86(6):2615-2625. PubMed ID: 33931854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5'-nuclease PCR.
    Nogva HK; Drømtorp SM; Nissen H; Rudi K
    Biotechniques; 2003 Apr; 34(4):804-8, 810, 812-3. PubMed ID: 12703305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of four foodborne pathogens based on magnetic separation multiplex PCR and capillary electrophoresis.
    He S; Huang Y; Ma Y; Yu H; Pang B; Liu X; Yin C; Wang X; Wei Y; Tian Y; Zhao C; Xu K; Wang J; Lv C; Song X; Jin M
    Biotechnol J; 2022 Jan; 17(1):e2100335. PubMed ID: 34599551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a sigDE-based real-time reverse-transcriptase PCR for the detection of viable Salmonella enterica.
    Zhou M; Yang J; Zhou X; Liu B; Liu D; Yuan C; He Y; Pan L; Shi X
    Foodborne Pathog Dis; 2014 Jul; 11(7):537-44. PubMed ID: 24926645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Filter-based pathogen enrichment technology for detection of multiple viable foodborne pathogens in 1 day.
    Murakami T
    J Food Prot; 2012 Sep; 75(9):1603-10. PubMed ID: 22947467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular detection and quantification of viable probiotic strains in animal feedstuffs using the commercial direct fed microbial Lactobacillus animalis NP51 as a model.
    Ayala DI; Chen JC; Bugarel M; Loneragan GH; den Bakker HC; Kottapalli KR; Brashears MM; Nightingale KK
    J Microbiol Methods; 2018 Jun; 149():36-43. PubMed ID: 29673790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phage-based technologies for highly sensitive luminescent detection of foodborne pathogens and microbial toxins: A review.
    Ye J; Guo J; Li T; Tian J; Yu M; Wang X; Majeed U; Song W; Xiao J; Luo Y; Yue T
    Compr Rev Food Sci Food Saf; 2022 Mar; 21(2):1843-1867. PubMed ID: 35142431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One day to one hour: how quickly can foodborne pathogens be detected?
    Bhunia AK
    Future Microbiol; 2014; 9(8):935-46. PubMed ID: 25302952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins.
    Lu X; Ye Y; Zhang Y; Sun X
    Crit Rev Food Sci Nutr; 2021; 61(22):3819-3835. PubMed ID: 32885986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters.
    Burtscher C; Wuertz S
    Appl Environ Microbiol; 2003 Aug; 69(8):4618-27. PubMed ID: 12902250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review.
    Kabiraz MP; Majumdar PR; Mahmud MMC; Bhowmik S; Ali A
    Heliyon; 2023 Apr; 9(4):e15482. PubMed ID: 37151686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Development of multiplex oligonucleotide ligation-PCR-universal DNA microarrays for detection of foodborne pathogens].
    Wang X; Ying S; Han R; Yuan J
    Wei Sheng Yan Jiu; 2017 Mar; 46(2):225-231. PubMed ID: 29903098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Viability Testing of UV-Inactivated Bacteria.
    Weigel KM; Nguyen FK; Kearney MR; Meschke JS; Cangelosi GA
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28283525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.