BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 36077344)

  • 21. Quantitative Phosphoproteome Analysis of
    Junemann J; Just I; Gerhard R; Pich A
    Front Microbiol; 2018; 9():3083. PubMed ID: 30619164
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Paparella AS; Cahill SM; Aboulache BL; Schramm VL
    ACS Chem Biol; 2022 Sep; 17(9):2507-2518. PubMed ID: 36038138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Essential Role of Rac1 Glucosylation in
    Petersen L; Stroh S; Schöttelndreier D; Grassl GA; Rottner K; Brakebusch C; Fahrer J; Genth H
    Front Microbiol; 2022; 13():846215. PubMed ID: 35321078
    [No Abstract]   [Full Text] [Related]  

  • 24. Specific inhibition of phorbol ester-stimulated phospholipase D by Clostridium sordellii lethal toxin and Clostridium difficile toxin B-1470 in HEK-293 cells. Restoration by Ral GTPases.
    Schmidt M; Voss M; Thiel M; Bauer B; Grannass A; Tapp E; Cool RH; de Gunzburg J; von Eichel-Streiber C; Jakobs KH
    J Biol Chem; 1998 Mar; 273(13):7413-22. PubMed ID: 9516439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural determinants of Clostridium difficile toxin A glucosyltransferase activity.
    Pruitt RN; Chumbler NM; Rutherford SA; Farrow MA; Friedman DB; Spiller B; Lacy DB
    J Biol Chem; 2012 Mar; 287(11):8013-20. PubMed ID: 22267739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.
    Egerer M; Giesemann T; Jank T; Satchell KJ; Aktories K
    J Biol Chem; 2007 Aug; 282(35):25314-21. PubMed ID: 17591770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation.
    Varela Chavez C; Haustant GM; Baron B; England P; Chenal A; Pauillac S; Blondel A; Popoff MR
    Toxins (Basel); 2016 Mar; 8(4):90. PubMed ID: 27023605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rho/Ras-GTPase-dependent and -independent activity of clostridial glucosylating toxins.
    Popoff MR; Geny B
    J Med Microbiol; 2011 Aug; 60(Pt 8):1057-1069. PubMed ID: 21349986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human intestinal enteroids as a model of
    Engevik MA; Danhof HA; Chang-Graham AL; Spinler JK; Engevik KA; Herrmann B; Endres BT; Garey KW; Hyser JM; Britton RA; Versalovic J
    Am J Physiol Gastrointest Liver Physiol; 2020 May; 318(5):G870-G888. PubMed ID: 32223302
    [No Abstract]   [Full Text] [Related]  

  • 30. A neutralizing antibody that blocks delivery of the enzymatic cargo of
    Kroh HK; Chandrasekaran R; Zhang Z; Rosenthal K; Woods R; Jin X; Nyborg AC; Rainey GJ; Warrener P; Melnyk RA; Spiller BW; Lacy DB
    J Biol Chem; 2018 Jan; 293(3):941-952. PubMed ID: 29180448
    [No Abstract]   [Full Text] [Related]  

  • 31. Clostridium difficile toxins: more than mere inhibitors of Rho proteins.
    Genth H; Dreger SC; Huelsenbeck J; Just I
    Int J Biochem Cell Biol; 2008; 40(4):592-7. PubMed ID: 18289919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human α-Defensin-5 Efficiently Neutralizes
    Korbmacher M; Fischer S; Landenberger M; Papatheodorou P; Aktories K; Barth H
    Front Pharmacol; 2020; 11():1204. PubMed ID: 32903430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enteric glial cells are susceptible to Clostridium difficile toxin B.
    Fettucciari K; Ponsini P; Gioè D; Macchioni L; Palumbo C; Antonelli E; Coaccioli S; Villanacci V; Corazzi L; Marconi P; Bassotti G
    Cell Mol Life Sci; 2017 Apr; 74(8):1527-1551. PubMed ID: 27891552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis.
    Papatheodorou P; Zamboglou C; Genisyuerek S; Guttenberg G; Aktories K
    PLoS One; 2010 May; 5(5):e10673. PubMed ID: 20498856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clostridium difficile Toxin Biology.
    Aktories K; Schwan C; Jank T
    Annu Rev Microbiol; 2017 Sep; 71():281-307. PubMed ID: 28657883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intrarectal instillation of Clostridium difficile toxin A triggers colonic inflammation and tissue damage: development of a novel and efficient mouse model of Clostridium difficile toxin exposure.
    Hirota SA; Iablokov V; Tulk SE; Schenck LP; Becker H; Nguyen J; Al Bashir S; Dingle TC; Laing A; Liu J; Li Y; Bolstad J; Mulvey GL; Armstrong GD; MacNaughton WK; Muruve DA; MacDonald JA; Beck PL
    Infect Immun; 2012 Dec; 80(12):4474-84. PubMed ID: 23045481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxin B is essential for virulence of Clostridium difficile.
    Lyras D; O'Connor JR; Howarth PM; Sambol SP; Carter GP; Phumoonna T; Poon R; Adams V; Vedantam G; Johnson S; Gerding DN; Rood JI
    Nature; 2009 Apr; 458(7242):1176-9. PubMed ID: 19252482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clostridium difficile toxin A-induced apoptosis is p53-independent but depends on glucosylation of Rho GTPases.
    Nottrott S; Schoentaube J; Genth H; Just I; Gerhard R
    Apoptosis; 2007 Aug; 12(8):1443-53. PubMed ID: 17437185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Binary Toxin of
    Stieglitz F; Gerhard R; Pich A
    Front Microbiol; 2021; 12():725612. PubMed ID: 34594315
    [No Abstract]   [Full Text] [Related]  

  • 40. Transient expression of RhoA, -B, and -C GTPases in HeLa cells potentiates resistance to Clostridium difficile toxins A and B but not to Clostridium sordellii lethal toxin.
    Giry M; Popoff MR; von Eichel-Streiber C; Boquet P
    Infect Immun; 1995 Oct; 63(10):4063-71. PubMed ID: 7558320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.