These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 36077556)
1. Impact of LTR-Retrotransposons on Genome Structure, Evolution, and Function in Curcurbitaceae Species. Li SF; She HB; Yang LL; Lan LN; Zhang XY; Wang LY; Zhang YL; Li N; Deng CL; Qian W; Gao WJ Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077556 [TBL] [Abstract][Full Text] [Related]
2. Lineage-specific amplification and epigenetic regulation of LTR-retrotransposons contribute to the structure, evolution, and function of Fabaceae species. Yang LL; Zhang XY; Wang LY; Li YG; Li XT; Yang Y; Su Q; Chen N; Zhang YL; Li N; Deng CL; Li SF; Gao WJ BMC Genomics; 2023 Jul; 24(1):423. PubMed ID: 37501164 [TBL] [Abstract][Full Text] [Related]
3. Karyotype and LTR-RTs analysis provide insights into oak genomic evolution. Cao RB; Chen R; Liao KX; Li H; Xu GB; Jiang XL BMC Genomics; 2024 Apr; 25(1):328. PubMed ID: 38566015 [TBL] [Abstract][Full Text] [Related]
4. Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns. Domingues DS; Cruz GM; Metcalfe CJ; Nogueira FT; Vicentini R; Alves Cde S; Van Sluys MA BMC Genomics; 2012 Apr; 13():137. PubMed ID: 22507400 [TBL] [Abstract][Full Text] [Related]
5. Transposable element discovery and characterization of LTR-retrotransposon evolutionary lineages in the tropical fruit species Passiflora edulis. da Costa ZP; Cauz-Santos LA; Ragagnin GT; Van Sluys MA; Dornelas MC; Berges H; de Mello Varani A; Vieira MLC Mol Biol Rep; 2019 Dec; 46(6):6117-6133. PubMed ID: 31549373 [TBL] [Abstract][Full Text] [Related]
6. Co-evolution of plant LTR-retrotransposons and their host genomes. Zhao M; Ma J Protein Cell; 2013 Jul; 4(7):493-501. PubMed ID: 23794032 [TBL] [Abstract][Full Text] [Related]
7. LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome. Vangelisti A; Simoni S; Usai G; Ventimiglia M; Natali L; Cavallini A; Mascagni F; Giordani T BMC Plant Biol; 2021 May; 21(1):221. PubMed ID: 34000996 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide characterization of long terminal repeat retrotransposons provides insights into trait evolution of four cucurbit species. Liu HN; Pei MS; Ampomah-Dwamena C; He GQ; Wei TL; Shi QF; Yu YH; Guo DL Funct Integr Genomics; 2023 Jul; 23(3):218. PubMed ID: 37393305 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary dynamics of retrotransposons following autopolyploidy in the Buckler Mustard species complex. Bardil A; Tayalé A; Parisod C Plant J; 2015 May; 82(4):621-31. PubMed ID: 25823965 [TBL] [Abstract][Full Text] [Related]
10. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. Gao L; McCarthy EM; Ganko EW; McDonald JF BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813 [TBL] [Abstract][Full Text] [Related]
11. High nucleotide similarity of three Orozco-Arias S; Dupeyron M; Gutiérrez-Duque D; Tabares-Soto R; Guyot R Genome; 2023 Mar; 66(3):51-61. PubMed ID: 36623262 [TBL] [Abstract][Full Text] [Related]
12. Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species. Qiu F; Ungerer MC BMC Plant Biol; 2018 Jan; 18(1):6. PubMed ID: 29304730 [TBL] [Abstract][Full Text] [Related]
13. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data. Tetreault HM; Ungerer MC G3 (Bethesda); 2016 Aug; 6(8):2299-308. PubMed ID: 27233667 [TBL] [Abstract][Full Text] [Related]
14. The population genetic structure approach adds new insights into the evolution of plant LTR retrotransposon lineages. Suguiyama VF; Vasconcelos LAB; Rossi MM; Biondo C; de Setta N PLoS One; 2019; 14(5):e0214542. PubMed ID: 31107873 [TBL] [Abstract][Full Text] [Related]
15. Diverse and mobile: eccDNA-based identification of carrot low-copy-number LTR retrotransposons active in callus cultures. Kwolek K; Kędzierska P; Hankiewicz M; Mirouze M; Panaud O; Grzebelus D; Macko-Podgórni A Plant J; 2022 Jun; 110(6):1811-1828. PubMed ID: 35426957 [TBL] [Abstract][Full Text] [Related]
16. Resolving fine-grained dynamics of retrotransposons: comparative analysis of inferential methods and genomic resources. Choudhury RR; Neuhaus JM; Parisod C Plant J; 2017 Jun; 90(5):979-993. PubMed ID: 28244250 [TBL] [Abstract][Full Text] [Related]
17. Novel clades of chromodomain-containing Gypsy LTR retrotransposons from mosses (Bryophyta). Novikova O; Mayorov V; Smyshlyaev G; Fursov M; Adkison L; Pisarenko O; Blinov A Plant J; 2008 Nov; 56(4):562-74. PubMed ID: 18643967 [TBL] [Abstract][Full Text] [Related]
18. Development of molecular markers based on LTR retrotransposon in the Cleistogenes songorica genome. Ma T; Wei X; Zhang Y; Li J; Wu F; Yan Q; Yan Z; Zhang Z; Kanzana G; Zhao Y; Yang Y; Zhang J J Appl Genet; 2022 Feb; 63(1):61-72. PubMed ID: 34554437 [TBL] [Abstract][Full Text] [Related]
19. Genome-Wide Identification and Analysis of High-Copy-Number LTR Retrotransposons in Asian Pears. Jiang S; Wang X; Shi C; Luo J Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30781727 [TBL] [Abstract][Full Text] [Related]
20. New Insights into Long Terminal Repeat Retrotransposons in Mulberry Species. Ma B; Kuang L; Xin Y; He N Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30970574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]