BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36077896)

  • 1. What Can Genetics Do for the Control of Infectious Diseases in Aquaculture?
    Sciuto S; Colli L; Fabris A; Pastorino P; Stoppani N; Esposito G; Prearo M; Esposito G; Ajmone-Marsan P; Acutis PL; Colussi S
    Animals (Basel); 2022 Aug; 12(17):. PubMed ID: 36077896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domestication and genetic improvement: balancing improved production against increased disease risks from inbreeding.
    Doyle RW; Lal KK; Virapat C
    Rev Sci Tech; 2019 Sep; 38(2):615-628. PubMed ID: 31866672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing genomics to fast-track genetic improvement in aquaculture.
    Houston RD; Bean TP; Macqueen DJ; Gundappa MK; Jin YH; Jenkins TL; Selly SLC; Martin SAM; Stevens JR; Santos EM; Davie A; Robledo D
    Nat Rev Genet; 2020 Jul; 21(7):389-409. PubMed ID: 32300217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BREEDING AND GENETICS SYMPOSIUM: Climate change and selective breeding in aquaculture.
    Sae-Lim P; Kause A; Mulder HA; Olesen I
    J Anim Sci; 2017 Apr; 95(4):1801-1812. PubMed ID: 28464113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying genetic technologies to combat infectious diseases in aquaculture.
    Robinson NA; Robledo D; Sveen L; Daniels RR; Krasnov A; Coates A; Jin YH; Barrett LT; Lillehammer M; Kettunen AH; Phillips BL; Dempster T; Doeschl-Wilson A; Samsing F; Difford G; Salisbury S; Gjerde B; Haugen JE; Burgerhout E; Dagnachew BS; Kurian D; Fast MD; Rye M; Salazar M; Bron JE; Monaghan SJ; Jacq C; Birkett M; Browman HI; Skiftesvik AB; Fields DM; Selander E; Bui S; Sonesson A; Skugor S; Østbye TK; Houston RD
    Rev Aquac; 2023 Mar; 15(2):491-535. PubMed ID: 38504717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic Tools and Selective Breeding in Molluscs.
    Hollenbeck CM; Johnston IA
    Front Genet; 2018; 9():253. PubMed ID: 30073016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genotype Imputation To Improve the Cost-Efficiency of Genomic Selection in Farmed Atlantic Salmon.
    Tsai HY; Matika O; Edwards SM; Antolín-Sánchez R; Hamilton A; Guy DR; Tinch AE; Gharbi K; Stear MJ; Taggart JB; Bron JE; Hickey JM; Houston RD
    G3 (Bethesda); 2017 Apr; 7(4):1377-1383. PubMed ID: 28250015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The European sea bass: a key marine fish model in the wild and in aquaculture.
    Vandeputte M; Gagnaire PA; Allal F
    Anim Genet; 2019 Jun; 50(3):195-206. PubMed ID: 30883830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some aspects of design and analysis of selection programmes in aquaculture species.
    Li Y; Ponzoni RW
    J Anim Breed Genet; 2015 Apr; 132(2):169-75. PubMed ID: 25823841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomics applied to livestock and aquaculture breeding.
    Yáñez JM; Xu P; Carvalheiro R; Hayes B
    Evol Appl; 2022 Apr; 15(4):517-522. PubMed ID: 35505887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of genotyping by sequencing in aquaculture breeding and genetics.
    Robledo D; Palaiokostas C; Bargelloni L; Martínez P; Houston R
    Rev Aquac; 2018 Aug; 10(3):670-682. PubMed ID: 30220910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential drivers of virulence evolution in aquaculture.
    Kennedy DA; Kurath G; Brito IL; Purcell MK; Read AF; Winton JR; Wargo AR
    Evol Appl; 2016 Feb; 9(2):344-54. PubMed ID: 26834829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of genomic within-family selection in aquaculture breeding programmes.
    Toro MA; Saura M; Fernandez J; Villanueva B
    J Anim Breed Genet; 2017 Jun; 134(3):256-263. PubMed ID: 28508478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host resistance influences patterns of experimental viral adaptation and virulence evolution.
    Kubinak JL; Potts WK
    Virulence; 2013 Jul; 4(5):410-8. PubMed ID: 23645287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infectious diseases of marine molluscs and host responses as revealed by genomic tools.
    Guo X; Ford SE
    Philos Trans R Soc Lond B Biol Sci; 2016 Mar; 371(1689):. PubMed ID: 26880838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering QTL for resistance and survival time to Philasterides dicentrarchi in turbot (Scophthalmus maximus).
    Rodríguez-Ramilo ST; Fernández J; Toro MA; Bouza C; Hermida M; Fernández C; Pardo BG; Cabaleiro S; Martínez P
    Anim Genet; 2013 Apr; 44(2):149-57. PubMed ID: 22690723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteriophages in the Control of
    Pereira C; Duarte J; Costa P; Braz M; Almeida A
    Antibiotics (Basel); 2022 Jan; 11(2):. PubMed ID: 35203766
    [No Abstract]   [Full Text] [Related]  

  • 18. Combining Multiple Approaches and Models to Dissect the Genetic Architecture of Resistance to Infections in Fish.
    Fraslin C; Quillet E; Rochat T; Dechamp N; Bernardet JF; Collet B; Lallias D; Boudinot P
    Front Genet; 2020; 11():677. PubMed ID: 32754193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances and Challenges in Genomic Selection for Disease Resistance.
    Poland J; Rutkoski J
    Annu Rev Phytopathol; 2016 Aug; 54():79-98. PubMed ID: 27491433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fish pathogen bacteria: Adhesion, parameters influencing virulence and interaction with host cells.
    Ben Hamed S; Tavares Ranzani-Paiva MJ; Tachibana L; de Carla Dias D; Ishikawa CM; Esteban MA
    Fish Shellfish Immunol; 2018 Sep; 80():550-562. PubMed ID: 29966687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.