These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 36077983)
1. Production Performance and Nutrient Conversion Efficiency of Field Cricket ( Mitchaothai J; Grabowski NT; Lertpatarakomol R; Trairatapiwan T; Chhay T; Keo S; Lukkananukool A Animals (Basel); 2022 Sep; 12(17):. PubMed ID: 36077983 [TBL] [Abstract][Full Text] [Related]
2. Bacterial Contamination and Antimicrobial Resistance in Two-Spotted ( Mitchaothai J; Grabowski NT; Lertpatarakomol R; Trairatapiwan T; Lukkananukool A Vet Sci; 2024 Jul; 11(7):. PubMed ID: 39057979 [TBL] [Abstract][Full Text] [Related]
3. Effects of protein levels on production performance, nutritional values, and phase feeding of two-spotted cricket. Kaewtapee C; Triwai P; Inson C; Masmeatathip R; Sriwongras P J Insect Sci; 2024 Mar; 24(2):. PubMed ID: 38554054 [TBL] [Abstract][Full Text] [Related]
4. Effects of Temperature and Density on House Cricket Survival and Growth and on the Prevalence of Acheta Domesticus Densovirus. Takacs J; Bryon A; Jensen AB; van Loon JJA; Ros VID Insects; 2023 Jun; 14(7):. PubMed ID: 37504594 [TBL] [Abstract][Full Text] [Related]
5. Effect of Feed on the Growth Performance, Nutrition Content and Cost of Raising the Field Cricket ( Magara HJO; Hugel S; Fisher BL Foods; 2024 Sep; 13(19):. PubMed ID: 39410175 [TBL] [Abstract][Full Text] [Related]
6. Effect of Diet on the Growth Performance, Feed Conversion, and Nutrient Content of the House Cricket. Bawa M; Songsermpong S; Kaewtapee C; Chanput W J Insect Sci; 2020 Jan; 20(2):. PubMed ID: 32219448 [TBL] [Abstract][Full Text] [Related]
7. Influence of Incubation Temperature and Relative Humidity on the Egg Hatchability Pattern of Two-Spotted ( Mitchaothai J; Lertpatarakomol R; Trairatapiwan T; Lukkananukool A Animals (Basel); 2024 Jul; 14(15):. PubMed ID: 39123701 [TBL] [Abstract][Full Text] [Related]
8. Virus Diversity and Loads in Crickets Reared for Feed: Implications for Husbandry. de Miranda JR; Granberg F; Low M; Onorati P; Semberg E; Jansson A; Berggren Å Front Vet Sci; 2021; 8():642085. PubMed ID: 34095270 [TBL] [Abstract][Full Text] [Related]
9. Consumption of cricket (Acheta domesticus) flour decreases insulin resistance and fat accumulation in rats fed with high-fat and -fructose diet. Escobar-Ortiz A; Hernández-Saavedra D; Lizardi-Mendoza J; Pérez-Ramírez IF; Mora-Izaguirre O; Ramos-Gómez M; Reynoso-Camacho R J Food Biochem; 2022 Sep; 46(9):e14269. PubMed ID: 35722751 [TBL] [Abstract][Full Text] [Related]
10. Active and Covert Infections of Cricket Iridovirus and Duffield KR; Hunt J; Sadd BM; Sakaluk SK; Oppert B; Rosario K; Behle RW; Ramirez JL Front Microbiol; 2021; 12():780796. PubMed ID: 34917059 [TBL] [Abstract][Full Text] [Related]
11. The Bacterial Microbiota of Edible Insects Aleknavičius D; Lukša J; Strazdaitė-Žielienė Ž; Servienė E Foods; 2022 Apr; 11(8):. PubMed ID: 35454659 [TBL] [Abstract][Full Text] [Related]
12. Self-selection of food ingredients and agricultural by-products by the house cricket, Acheta domesticus (Orthoptera: Gryllidae): A holistic approach to develop optimized diets. Morales-Ramos JA; Rojas MG; Dossey AT; Berhow M PLoS One; 2020; 15(1):e0227400. PubMed ID: 31978186 [TBL] [Abstract][Full Text] [Related]
13. From Farm to Fork: Crickets as Alternative Source of Protein, Minerals, and Vitamins. Murugu DK; Onyango AN; Ndiritu AK; Osuga IM; Xavier C; Nakimbugwe D; Tanga CM Front Nutr; 2021; 8():704002. PubMed ID: 34447775 [TBL] [Abstract][Full Text] [Related]
14. Crickets are not a free lunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. Lundy ME; Parrella MP PLoS One; 2015; 10(4):e0118785. PubMed ID: 25875026 [TBL] [Abstract][Full Text] [Related]
15. Suitability of maize crop residue fermented by Ventura M; Holland ME; Smith MB; Chaparro JM; Prenni J; Patz JA; Paskewitz S; Weir TL; Stull VJ Front Nutr; 2023; 10():1157811. PubMed ID: 37497060 [TBL] [Abstract][Full Text] [Related]
16. Maintaining Laboratory Cultures of Gryllus bimaculatus, a Versatile Orthopteran Model for Insect Agriculture and Invertebrate Physiology. Ventura MK; Stull VJ; Paskewitz SM J Vis Exp; 2022 Jun; (184):. PubMed ID: 35758653 [TBL] [Abstract][Full Text] [Related]
17. Sensitive Period for the Recovery of the Response Rate of the Wind-Evoked Escape Behavior of Unilaterally Cercus-Ablated Crickets (Gryllus bimaculatus). Takuwa H; Kanou M Zoolog Sci; 2015 Apr; 32(2):119-23. PubMed ID: 25826058 [TBL] [Abstract][Full Text] [Related]
18. Microbial Dynamics during Industrial Rearing, Processing, and Storage of Tropical House Crickets (Gryllodes sigillatus) for Human Consumption. Vandeweyer D; Wynants E; Crauwels S; Verreth C; Viaene N; Claes J; Lievens B; Van Campenhout L Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625988 [TBL] [Abstract][Full Text] [Related]
19. Rearing conditions required for behavioral compensation after unilateral cercal ablation in the cricket Gryllus bimaculatus. Kanou M; Teshima N; Nagami T Zoolog Sci; 2002 Apr; 19(4):403-9. PubMed ID: 12130817 [TBL] [Abstract][Full Text] [Related]
20. Rearing under different conditions results in different functional recoveries of giant interneurons in unilaterally cercus-ablated crickets, Gryllus bimaculatus. Kanou M; Kuroishi H; Takuwa H Zoolog Sci; 2008 Jun; 25(6):653-61. PubMed ID: 18624575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]