BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 36078071)

  • 1. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets.
    Tanase DM; Valasciuc E; Gosav EM; Floria M; Costea CF; Dima N; Tudorancea I; Maranduca MA; Serban IL
    Cells; 2022 Aug; 11(17):. PubMed ID: 36078071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications.
    Greenberg HZE; Zhao G; Shah AM; Zhang M
    Cardiovasc Res; 2022 May; 118(6):1433-1451. PubMed ID: 33881501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. COX-2 Is Downregulated in Human Stenotic Aortic Valves and Its Inhibition Promotes Dystrophic Calcification.
    Vieceli Dalla Sega F; Fortini F; Cimaglia P; Marracino L; Tonet E; Antonucci A; Moscarelli M; Campo G; Rizzo P; Ferrari R
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evogliptin Suppresses Calcific Aortic Valve Disease by Attenuating Inflammation, Fibrosis, and Calcification.
    Choi B; Kim EY; Kim JE; Oh S; Park SO; Kim SM; Choi H; Song JK; Chang EJ
    Cells; 2021 Jan; 10(1):. PubMed ID: 33401457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Apoptosis and Oxidative Stress in a Cell Spheroid Model of Calcific Aortic Valve Disease.
    Coutts CW; Baldwin AM; Jebeli M; Jolin GE; Mungai RW; Billiar KL
    Cells; 2023 Dec; 13(1):. PubMed ID: 38201249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor-β1 promotes fibrosis but attenuates calcification of valvular tissue applied as a three-dimensional calcific aortic valve disease model.
    Jenke A; Kistner J; Saradar S; Chekhoeva A; Yazdanyar M; Bergmann AK; Rötepohl MV; Lichtenberg A; Akhyari P
    Am J Physiol Heart Circ Physiol; 2020 Nov; 319(5):H1123-H1141. PubMed ID: 32986963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting vasoactive peptides for managing calcific aortic valve disease.
    Peltonen T; Ohukainen P; Ruskoaho H; Rysä J
    Ann Med; 2017 Feb; 49(1):63-74. PubMed ID: 27585243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcified aortic valve disease complicated with and without diabetes mellitus: the underlying pathogenesis.
    Chen Y; Xiao F; Wang R
    Rev Cardiovasc Med; 2022 Jan; 23(1):7. PubMed ID: 35092199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress and valvular endothelial cells in aortic valve calcification.
    Shu L; Yuan Z; Li F; Cai Z
    Biomed Pharmacother; 2023 Jul; 163():114775. PubMed ID: 37116353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel pharmacological targets for calcific aortic valve disease: Prevention and treatments.
    Myasoedova VA; Ravani AL; Frigerio B; Valerio V; Moschetta D; Songia P; Poggio P
    Pharmacol Res; 2018 Oct; 136():74-82. PubMed ID: 30149054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inflammatory and metabolic mechanisms underlying the calcific aortic valve disease.
    Cho KI; Sakuma I; Sohn IS; Jo SH; Koh KK
    Atherosclerosis; 2018 Oct; 277():60-65. PubMed ID: 30173080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro 3D model and miRNA drug delivery to target calcific aortic valve disease.
    van der Ven CF; Wu PJ; Tibbitt MW; van Mil A; Sluijter JP; Langer R; Aikawa E
    Clin Sci (Lond); 2017 Feb; 131(3):181-195. PubMed ID: 28057890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncoupling the Vicious Cycle of Mechanical Stress and Inflammation in Calcific Aortic Valve Disease.
    Dayawansa NH; Baratchi S; Peter K
    Front Cardiovasc Med; 2022; 9():783543. PubMed ID: 35355968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innate immune cells in the pathophysiology of calcific aortic valve disease: lessons to be learned from atherosclerotic cardiovascular disease?
    Broeders W; Bekkering S; El Messaoudi S; Joosten LAB; van Royen N; Riksen NP
    Basic Res Cardiol; 2022 May; 117(1):28. PubMed ID: 35581364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ApoC-III is a novel inducer of calcification in human aortic valves.
    Schlotter F; de Freitas RCC; Rogers MA; Blaser MC; Wu PJ; Higashi H; Halu A; Iqbal F; Andraski AB; Rodia CN; Kuraoka S; Wen JR; Creager M; Pham T; Hutcheson JD; Body SC; Kohan AB; Sacks FM; Aikawa M; Singh SA; Aikawa E
    J Biol Chem; 2021; 296():100193. PubMed ID: 33334888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcific Aortic Valve Disease: Part 1--Molecular Pathogenetic Aspects, Hemodynamics, and Adaptive Feedbacks.
    Pasipoularides A
    J Cardiovasc Transl Res; 2016 Apr; 9(2):102-18. PubMed ID: 26891845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential drug targets for calcific aortic valve disease.
    Hutcheson JD; Aikawa E; Merryman WD
    Nat Rev Cardiol; 2014 Apr; 11(4):218-31. PubMed ID: 24445487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of calcific aortic valve disease: Do we know enough for new clinical trials?
    Kostyunin AE; Yuzhalin AE; Ovcharenko EA; Kutikhin AG
    J Mol Cell Cardiol; 2019 Jul; 132():189-209. PubMed ID: 31136747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DUSP26 induces aortic valve calcification by antagonizing MDM2-mediated ubiquitination of DPP4 in human valvular interstitial cells.
    Wang Y; Han D; Zhou T; Chen C; Cao H; Zhang JZ; Ma N; Liu C; Song M; Shi J; Jin X; Cao F; Dong N
    Eur Heart J; 2021 Aug; 42(30):2935-2951. PubMed ID: 34179958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metformin alleviates the calcification of aortic valve interstitial cells through activating the PI3K/AKT pathway in an AMPK dependent way.
    En Q; Zeping H; Yuetang W; Xu W; Wei W
    Mol Med; 2021 Dec; 27(1):156. PubMed ID: 34895136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.