These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36079264)

  • 1. Predicting the Durability of Solid Fired Bricks Using NDT Electroacoustic Methods.
    Bartoň V; Dvořák R; Cikrle P; Šnédar J
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Construction Material Using Wastewater: An Application of Circular Economy for Mass Production of Bricks.
    Ghafoor S; Hameed A; Shah SAR; Azab M; Faheem H; Nawaz MF; Iqbal F
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Durability Assessment and Microstructure of High-Strength Performance Bricks Produced from PET Waste and Foundry Sand.
    Aneke FI; Awuzie BO; Mostafa MMH; Okorafor C
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forms of Damage of Bricks Subjected to Cyclic Freezing and Thawing in Actual Conditions.
    Stryszewska T; Kańka S
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30974775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick.
    Mezencevova A; Yeboah NN; Burns SE; Kahn LF; Kurtis KE
    J Environ Manage; 2012 Dec; 113():128-36. PubMed ID: 23017584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eco-Friendly Fired Brick Produced from Industrial Ash and Natural Clay: A Study of Waste Reuse.
    Doğan-Sağlamtimur N; Bilgil A; Szechyńska-Hebda M; Parzych S; Hebda M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A practical proposal for solving the world's cigarette butt problem: Recycling in fired clay bricks.
    Mohajerani A; Kadir AA; Larobina L
    Waste Manag; 2016 Jun; 52():228-44. PubMed ID: 26975623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on the properties of modern blue clay brick for Kaifeng People's Conference Hall.
    Ma S; Wu Y; Bao P
    Sci Rep; 2021 Oct; 11(1):20631. PubMed ID: 34667201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the Size and Type of Pores on Brick Resistance to Freeze-Thaw Cycles.
    Netinger Grubeša I; Vračević M; Ducman V; Marković B; Szenti I; Kukovecz Á
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32842686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics and weathering mechanisms of the traditional Chinese blue brick from the ancient city of Ping Yao.
    Liu JB; Zhang ZJ
    R Soc Open Sci; 2020 Aug; 7(8):200058. PubMed ID: 32968504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Frost Impact on Traditional Ceramic Building Materials Utilized in Facing Walls.
    Kaczmarek A; Wesołowska M
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.
    Eliche-Quesada D; Leite-Costa J
    Waste Manag; 2016 Feb; 48():323-333. PubMed ID: 26653359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.
    Sutcu M; Ozturk S; Yalamac E; Gencel O
    J Environ Manage; 2016 Oct; 181():185-192. PubMed ID: 27343435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.
    Lin KL; Huang LS; Shie JL; Cheng CJ; Lee CH; Chang TC
    Environ Technol; 2013; 34(1-4):15-24. PubMed ID: 23530311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on Deterioration of Gray Brick with Different Moisture Contents under Freeze-Thaw Environment.
    Yue J; Ma C; Zhao L; Kong Q; Xu X; Wang Z; Chen Y
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35269050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residual Mechanical Properties of Concrete Made with Crushed Clay Bricks and Roof Tiles Aggregate after Exposure to High Temperatures.
    Miličević I; Štirmer N; Banjad Pečur I
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Pore-Size Distribution on the Resistance of Clay Brick to Freeze-Thaw Cycles.
    Netinger Grubeša I; Vračević M; Ranogajec J; Vučetić S
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Three Amu-Darya Basin Clays in Ceramic Brick Industry and Their Applications with Brick Waste.
    Korpayev S; Bayramov M; Durdyev S; Hamrayev H
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hygric Properties of Machine-Made, Historic Clay Bricks from North-Eastern Poland (Former East Prussia): Characterization and Specification for Replacement Materials.
    Tunkiewicz M; Misiewicz J; Sikora P; Chung SY
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bond Tests on Clay Bricks and Natural Stone Masonry Externally Bonded with FRP.
    Leone M; Aiello MA
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.