These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 36079372)
1. Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient. Adeleye OA; Bamiro OA; Albalawi DA; Alotaibi AS; Iqbal H; Sanyaolu S; Femi-Oyewo MN; Sodeinde KO; Yahaya ZS; Thiripuranathar G; Menaa F Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079372 [TBL] [Abstract][Full Text] [Related]
2. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending. Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448 [TBL] [Abstract][Full Text] [Related]
3. New direct compression excipient from tigernut starch: physicochemical and functional properties. Builders PF; Anwunobi PA; Mbah CC; Adikwu MU AAPS PharmSciTech; 2013 Jun; 14(2):818-27. PubMed ID: 23649994 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of non-crystalline cellulose as a novel excipient in solid dose products. Pawar K; Render D; Rangari V; Lee Y; Babu RJ Drug Dev Ind Pharm; 2018 Sep; 44(9):1512-1519. PubMed ID: 29734848 [TBL] [Abstract][Full Text] [Related]
5. Microcrystalline Cellulose Extracted from Native Plants as an Excipient for Solid Dosage Formulations in Drug Delivery. Viera-Herrera C; Santamaría-Aguirre J; Vizuete K; Debut A; Whitehead DC; Alexis F Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32438544 [TBL] [Abstract][Full Text] [Related]
6. Optimization of microfibrillated cellulose isolation from cocoa pod husk via mild oxalic acid hydrolysis: A response surface methodology approach. Zambrano-Mite LF; Villasana Y; Bejarano ML; Luciani C; Niebieskikwiat D; Álvarez W; Cueva DF; Aguilera-Pesantes D; Orejuela-Escobar LM Heliyon; 2023 Jun; 9(6):e17258. PubMed ID: 37389052 [No Abstract] [Full Text] [Related]
7. Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier. Uesu NY; Pineda EA; Hechenleitner AA Int J Pharm; 2000 Sep; 206(1-2):85-96. PubMed ID: 11058813 [TBL] [Abstract][Full Text] [Related]
8. Isolation and Characterization of Cellulose Microfibers from Colombian Cocoa Pod Husk via Chemical Treatment with Pressure Effects. Hozman-Manrique AS; Garcia-Brand AJ; Hernández-Carrión M; Porras A Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771964 [TBL] [Abstract][Full Text] [Related]
9. Microcrystalline cellulose from soybean hull as an excipient in solid dosage forms: Preparation, powder characterization, and tableting properties. Alamdari NE; Aksoy B; Babu RJ; Jiang Z Int J Biol Macromol; 2024 Jun; 270(Pt 1):132298. PubMed ID: 38750863 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of novel microcrystalline cellulose from Ensete glaucum (Roxb.) Cheesman biomass as sustainable drug delivery biomaterial. Pachuau L; Dutta RS; Hauzel L; Devi TB; Deka D Carbohydr Polym; 2019 Feb; 206():336-343. PubMed ID: 30553330 [TBL] [Abstract][Full Text] [Related]
11. Morphological, Physiochemical and Thermal Properties of Microcrystalline Cellulose (MCC) Extracted from Bamboo Fiber. Rasheed M; Jawaid M; Karim Z; Abdullah LC Molecules; 2020 Jun; 25(12):. PubMed ID: 32570929 [TBL] [Abstract][Full Text] [Related]
12. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression. Nakamura S; Tanaka C; Yuasa H; Sakamoto T AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317 [TBL] [Abstract][Full Text] [Related]
14. Isolation and characterization of microcrystalline cellulose from roselle fibers. Kian LK; Jawaid M; Ariffin H; Alothman OY Int J Biol Macromol; 2017 Oct; 103():931-940. PubMed ID: 28549863 [TBL] [Abstract][Full Text] [Related]
15. Insights into the production and physicochemical properties of oxycellulose microcrystalline with coexisting crystalline forms. Ahmed-Haras MR; Kao N; Ward L; Islam MS Int J Biol Macromol; 2020 Mar; 146():150-161. PubMed ID: 31837363 [TBL] [Abstract][Full Text] [Related]
16. Modification of Bulk Density, Flow Property and Crystallinity of Microcrystalline Cellulose Prepared from Waste Cotton. Tasnim S; Tipu MFK; Rana MS; Rahim MA; Haque M; Amran MS; Chowdhury AA; Chowdhury JA Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629955 [TBL] [Abstract][Full Text] [Related]
17. Preliminary studies of the development of a direct compression cellulose excipient from bagasse. Padmadisastra Y; Gonda I J Pharm Sci; 1989 Jun; 78(6):508-14. PubMed ID: 2760828 [TBL] [Abstract][Full Text] [Related]
18. Lignin and Cellulose Blends as Pharmaceutical Excipient for Tablet Manufacturing via Direct Compression. Domínguez-Robles J; Stewart SA; Rendl A; González Z; Donnelly RF; Larrañeta E Biomolecules; 2019 Aug; 9(9):. PubMed ID: 31466387 [TBL] [Abstract][Full Text] [Related]
19. An update on microcrystalline cellulose in direct compression: Functionality, critical material attributes, and co-processed excipients. Zhao H; Zhao L; Lin X; Shen L Carbohydr Polym; 2022 Feb; 278():118968. PubMed ID: 34973783 [TBL] [Abstract][Full Text] [Related]
20. Modification of physical characteristics of microcrystalline cellulose by codrying with beta-cyclodextrins. Tsai T; Wu JS; Ho HO; Sheu MT J Pharm Sci; 1998 Jan; 87(1):117-22. PubMed ID: 9452979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]