These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36079495)

  • 1. In Situ Measurement of Cyclic Plastic Zone and Internal Strain Response of Q&P Steel near Fatigue Crack Tip Region Based on Micro-DIC.
    Gao H; Lin Z; Huang X; Shang H; Zhan J
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Measurement of the Strain Field at the Fatigue Crack Tip Based on Sub-Image Stitching and Matching DIC.
    Lin Z; Shang H; Gao H; Huang X
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on the Evolution Law Physical Short Fatigue Crack and Tip Deformation Fields during Crack Closure Process of the Q&P Steel.
    Shang H; Lin Z; Gao H; Shan X; Zhan J
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Plasticity Effects on Growing Fatigue Cracks Using the CJP Model of Crack Tip Fields.
    Vasco-Olmo JM; Camacho-Reyes A; Gómez Gonzales GL; Díaz F
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterials.
    Kolken HMA; Garcia AF; Plessis AD; Meynen A; Rans C; Scheys L; Mirzaali MJ; Zadpoor AA
    Acta Biomater; 2022 Jan; 138():398-409. PubMed ID: 34763109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Plastic Crack-Tip Opening Displacement Tool Based on Digital Image Correlation for Estimating the Fatigue-Crack-Growth Law on 316L Stainless Steel.
    Ajmal M; Lopez-Crespo C; Cruces AS; Lopez-Crespo P
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on Fatigue Crack Growth in Rail Steel at Numerical and Experimental Approaches.
    Yang B; Wang S; Li J; Ding X; Xiao Q; Xiao S
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FCG Modelling Considering the Combined Effects of Cyclic Plastic Deformation and Growth of Micro-Voids.
    Sérgio ER; Antunes FV; Borges MF; Neto DM
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elasto-Plastic Fatigue Crack Growth Behavior of Extruded Mg Alloy with Deformation Anisotropy Due to Stress Ratio Fluctuation.
    Masuda K; Ishihara S; Oguma N; Ishiguro M; Sakamoto Y
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.
    Gołebiowski B; Swiatnicki WA; Gaspérini M
    J Microsc; 2010 Mar; 237(3):352-8. PubMed ID: 20500395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Residual Stresses on Fatigue Crack Growth: A Numerical Study Based on Cumulative Plastic Strain at the Crack Tip.
    Neto DM; Borges MF; Sérgio ER; Antunes FV
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-field Strain Measurements for Microstructurally Small Fatigue Crack Propagation Using Digital Image Correlation Method.
    Malitckii E; Remes H; Lehto P; Bossuyt S
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Study on Fatigue Crack Propagation for Friction Stir Welded Plate of 7N01 Al-Zn-Mg Alloy by EBSD.
    Liu W; Wu D; Duan S; Wang T; Zou Y
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting Classical Issues of Fatigue Crack Growth Using a Non-Linear Approach.
    Borges MF; Neto DM; Antunes FV
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The failure behavior of coal-rock combined body under compression-shear loading.
    Li X; Li X; Yuan H; Li H; Yang G; Wang S; Ding G; Su S
    Sci Prog; 2024; 107(1):368504231225860. PubMed ID: 38196238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue Crack Growth Rates and Crack Tip Opening Loads in CT Specimens Made of SDSS and Manufactured Using WAAM.
    Sales A; Khanna A; Hughes J; Yin L; Kotousov A
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel ultrasonic non-destructive testing methodology to monitor fatigue crack growth in compact tension specimens.
    Abraham ST; Babu MN; Venkatraman B
    Rev Sci Instrum; 2023 Mar; 94(3):035108. PubMed ID: 37012745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue Crack Growth Behavior of the MIG Welded Joint of 06Cr19Ni10 Stainless Steel.
    Tang L; Qian C; Ince A; Zheng J; Li H; Han Z
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30072599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the J-Integral and Digital Image Correlation (DIC) to Determination of Multiple Crack Propagation Law of UHPC under Flexural Cyclic Loading.
    Niu Y; Fan J; Shi X; Wei J; Jiao C; Hu J
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Crack Initiation Based on Energy Storage Rate during Low-Cycle Fatigue of Austenitic Stainless Steel.
    Grodzki W; Oliferuk W; Doroszko M; Szusta J; Urbański L
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.