BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36079687)

  • 1.
    Davis SC
    Plants (Basel); 2022 Sep; 11(17):. PubMed ID: 36079687
    [No Abstract]   [Full Text] [Related]  

  • 2. A model of environmental limitations on production of Agave americana L. grown as a biofuel crop in semi-arid regions.
    Niechayev NA; Jones AM; Rosenthal DM; Davis SC
    J Exp Bot; 2019 Nov; 70(22):6549-6559. PubMed ID: 30597061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue Composition of
    Jones AM; Zhou Y; Held MA; Davis SC
    Front Plant Sci; 2020; 11():654. PubMed ID: 32595656
    [No Abstract]   [Full Text] [Related]  

  • 4. Lessons from the history of Agave: ecological and cultural context for valuation of CAM.
    Davis SC; Ortiz-Cano HG
    Ann Bot; 2023 Nov; 132(4):819-833. PubMed ID: 37279950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Undervalued potential of crassulacean acid metabolism for current and future agricultural production.
    Davis SC; Simpson J; Gil-Vega KDC; Niechayev NA; Tongerlo EV; Castano NH; Dever LV; Búrquez A
    J Exp Bot; 2019 Nov; 70(22):6521-6537. PubMed ID: 31087091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome Comparison Reveals Distinct Selection Patterns in Domesticated and Wild Agave Species, the Important CAM Plants.
    Huang X; Wang B; Xi J; Zhang Y; He C; Zheng J; Gao J; Chen H; Zhang S; Wu W; Liang Y; Yi K
    Int J Genomics; 2018; 2018():5716518. PubMed ID: 30596084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agave as a model CAM crop system for a warming and drying world.
    Stewart JR
    Front Plant Sci; 2015; 6():684. PubMed ID: 26442005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular structures of fructans from Agave tequilana Weber var. azul.
    Lopez MG; Mancilla-Margalli NA; Mendoza-Diaz G
    J Agric Food Chem; 2003 Dec; 51(27):7835-40. PubMed ID: 14690361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rethinking the potential productivity of crassulacean acid metabolism by integrating metabolic dynamics with shoot architecture, using the example of Agave tequilana.
    Wang Y; Smith JAC; Zhu XG; Long SP
    New Phytol; 2023 Sep; 239(6):2180-2196. PubMed ID: 37537720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved method for isolation of high-quality total RNA from
    Maceda-López LF; Villalpando-Aguilar JL; García-Hernández E; Ávila de Dios E; Andrade-Canto SB; Morán-Velázquez DC; Rodríguez-López L; Hernández-Díaz D; Chablé-Vega MA; Trejo L; Góngora-Castillo E; López-Rosas I; Simpson J; Alatorre-Cobos F
    3 Biotech; 2021 Feb; 11(2):75. PubMed ID: 33505830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and use of bioenergy feedstocks for semi-arid and arid lands.
    Cushman JC; Davis SC; Yang X; Borland AM
    J Exp Bot; 2015 Jul; 66(14):4177-93. PubMed ID: 25873672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light to liquid fuel: theoretical and realized energy conversion efficiency of plants using crassulacean acid metabolism (CAM) in arid conditions.
    Davis SC; LeBauer DS; Long SP
    J Exp Bot; 2014 Jul; 65(13):3471-8. PubMed ID: 24744431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seed germination of Agave species as influenced by substrate water potential.
    Ramírez-Tobías HM; Peña-Valdivia CB; Trejo C; Aguirre R JR; Vaquera H H
    Biol Res; 2014 Apr; 47(1):11. PubMed ID: 25027050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eddy covariance captures four-phase crassulacean acid metabolism (CAM) gas exchange signature in Agave.
    Owen NA; Choncubhair ÓN; Males J; Del Real Laborde JI; Rubio-Cortés R; Griffiths H; Lanigan G
    Plant Cell Environ; 2016 Feb; 39(2):295-309. PubMed ID: 26177873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM photosynthesis in Agave.
    Yin H; Guo HB; Weston DJ; Borland AM; Ranjan P; Abraham PE; Jawdy SS; Wachira J; Tuskan GA; Tschaplinski TJ; Wullschleger SD; Guo H; Hettich RL; Gross SM; Wang Z; Visel A; Yang X
    BMC Genomics; 2018 Aug; 19(1):588. PubMed ID: 30081833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mayahuelin, a Type I Ribosome Inactivating Protein: Characterization, Evolution, and Utilization in Phylogenetic Analyses of
    Lledías F; Gutiérrez J; Martínez-Hernández A; García-Mendoza A; Sosa E; Hernández-Bermúdez F; Dinkova TD; Reyes S; Cassab GI; Nieto-Sotelo J
    Front Plant Sci; 2020; 11():573. PubMed ID: 32528490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De Novo Transcriptome Assembly of
    Huang X; Xiao M; Xi J; He C; Zheng J; Chen H; Gao J; Zhang S; Wu W; Liang Y; Xie L; Yi K
    Genes (Basel); 2019 Jan; 10(2):. PubMed ID: 30704153
    [No Abstract]   [Full Text] [Related]  

  • 18. Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study.
    Corbin KR; Byrt CS; Bauer S; DeBolt S; Chambers D; Holtum JA; Karem G; Henderson M; Lahnstein J; Beahan CT; Bacic A; Fincher GB; Betts NS; Burton RA
    PLoS One; 2015; 10(8):e0135382. PubMed ID: 26305101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward systems-level analysis of agricultural production from crassulacean acid metabolism (CAM): scaling from cell to commercial production.
    Davis SC; Ming R; LeBauer DS; Long SP
    New Phytol; 2015 Oct; 208(1):66-72. PubMed ID: 26094655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservation genomics of
    Ruiz Mondragon KY; Aguirre-Planter E; Gasca-Pineda J; Klimova A; Trejo-Salazar RE; Reyes Guerra MA; Medellin RA; Piñero D; Lira R; Eguiarte LE
    PeerJ; 2022; 10():e14398. PubMed ID: 36415865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.