These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 36079854)

  • 1. Studies on the Reaction of Dietary Methylglyoxal and Creatine during Simulated Gastrointestinal Digestion and in Human Volunteers.
    Treibmann S; Groß J; Pätzold S; Henle T
    Nutrients; 2022 Aug; 14(17):. PubMed ID: 36079854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary glycation compounds - implications for human health.
    Hellwig M; Diel P; Eisenbrand G; Grune T; Guth S; Henle T; Humpf HU; Joost HG; Marko D; Raupbach J; Roth A; Vieths S; Mally A
    Crit Rev Toxicol; 2024 Sep; 54(8):485-617. PubMed ID: 39150724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycation reactions of methylglyoxal during digestion in a dynamic, in vitro model of the upper gastrointestinal tract (TIM-1).
    Treibmann S; Venema K; Henle T
    Food Sci Nutr; 2024 Jul; 12(7):4702-4712. PubMed ID: 39055211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the Formation of 3-Deoxyglucosone- and Methylglyoxal-Derived Hydroimidazolones of Creatine during Heat Treatment of Meat.
    Treibmann S; Spengler F; Degen J; Löbner J; Henle T
    J Agric Food Chem; 2019 May; 67(20):5874-5881. PubMed ID: 31050431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Protein-Bound Maillard Reaction Products during the Storage of Manuka Honey.
    Thierig M; Siegel E; Henle T
    J Agric Food Chem; 2023 Oct; 71(41):15261-15269. PubMed ID: 37796058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.
    Hellwig M; Rückriemen J; Sandner D; Henle T
    J Agric Food Chem; 2017 May; 65(17):3532-3540. PubMed ID: 28415841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic transit of dietary methylglyoxal.
    Degen J; Vogel M; Richter D; Hellwig M; Henle T
    J Agric Food Chem; 2013 Oct; 61(43):10253-60. PubMed ID: 23451712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MG-HCr, the Methylglyoxal-Derived Hydroimidazolone of Creatine, a Biomarker for the Dietary Intake of Animal Source Food.
    Treibmann S; Händler S; Hofmann T; Henle T
    J Agric Food Chem; 2020 Apr; 68(17):4966-4972. PubMed ID: 32233480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free L-Lysine and Its Methyl Ester React with Glyoxal and Methylglyoxal in Phosphate Buffer (100 mM, pH 7.4) to Form
    Baskal S; Tsikas D
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel generation of extra advanced glycation end-products during co-digestion of whey proteins and α-dicarbonyls in a simulated gastrointestinal model.
    Zhang Q; Jiang Y; Li H; Gao Z; Yu G; Xie H; Wang Y; Fu L
    Food Funct; 2023 Jun; 14(11):5342-5354. PubMed ID: 37211863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of glycation derived from α-dicarbonyl compounds on the in vitro digestibility of β-casein and β-lactoglobulin: A model study with glyoxal, methylglyoxal and butanedione.
    Zhao D; Le TT; Larsen LB; Li L; Qin D; Su G; Li B
    Food Res Int; 2017 Dec; 102():313-322. PubMed ID: 29195953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gastrointestinal digestion of dietary advanced glycation endproducts using an in vitro model of the gastrointestinal tract (TIM-1).
    van der Lugt T; Venema K; van Leeuwen S; Vrolijk MF; Opperhuizen A; Bast A
    Food Funct; 2020 Jul; 11(7):6297-6307. PubMed ID: 32602872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual effects of phloretin and phloridzin on the glycation induced by methylglyoxal in model systems.
    Ma J; Peng X; Zhang X; Chen F; Wang M
    Chem Res Toxicol; 2011 Aug; 24(8):1304-11. PubMed ID: 21696151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LC-MS/MS Analysis of Reaction Products of Arginine/Methylarginines with Methylglyoxal/Glyoxal.
    Rodda R; Addipilli R; Kannoujia J; Lingampelly SS; Sripadi P
    Chem Res Toxicol; 2023 Nov; 36(11):1768-1777. PubMed ID: 37888804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The expanding impact of methylglyoxal on behavior-related disorders.
    de Almeida GRL; Szczepanik JC; Selhorst I; Cunha MP; Dafre AL
    Prog Neuropsychopharmacol Biol Psychiatry; 2023 Jan; 120():110635. PubMed ID: 36103947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of in vitro simulated gastroduodenal digestion on methylglyoxal concentration of Manuka ( Lectospermum scoparium ) honey.
    Daglia M; Ferrari D; Collina S; Curti V
    J Agric Food Chem; 2013 Mar; 61(9):2140-5. PubMed ID: 23406199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic Analysis of Methylglyoxal Modifications Reveals Susceptibility of Glycolytic Enzymes to Dicarbonyl Stress.
    Donnellan L; Young C; Simpson BS; Acland M; Dhillon VS; Costabile M; Fenech M; Hoffmann P; Deo P
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1,2-dicarbonyl compounds in commonly consumed foods.
    Degen J; Hellwig M; Henle T
    J Agric Food Chem; 2012 Jul; 60(28):7071-9. PubMed ID: 22724891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylglyoxal and methylglyoxal-arginine adducts do not directly inhibit endothelial nitric oxide synthase.
    Brouwers O; Teerlink T; van Bezu J; Barto R; Stehouwer CD; Schalkwijk CG
    Ann N Y Acad Sci; 2008 Apr; 1126():231-4. PubMed ID: 18079474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.