These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 36079939)
41. Thiocyanate-Passivated Diaminonaphthalene-Incorporated Dion-Jacobson Perovskite for Highly Efficient and Stable Solar Cells. Yukta ; Chavan RD; Prochowicz D; Yadav P; Tavakoli MM; Satapathi S ACS Appl Mater Interfaces; 2022 Jan; 14(1):850-860. PubMed ID: 34978806 [TBL] [Abstract][Full Text] [Related]
42. Green Anisole as Antisolvent in Planar Triple-Cation Perovskite Solar Cells with Varying Cesium Concentrations. La Ferrara V; De Maria A; Rametta G Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258255 [TBL] [Abstract][Full Text] [Related]
43. Modulating carrier dynamics through perovskite film engineering. Lim SS; Chong WK; Solanki A; Dewi HA; Mhaisalkar S; Mathews N; Sum TC Phys Chem Chem Phys; 2016 Oct; 18(39):27119-27123. PubMed ID: 27345742 [TBL] [Abstract][Full Text] [Related]
44. Anti-solvent materials enhanced structural and optical properties on ambiently fabricated perovskite thin films. Nur-E-Alam M; Islam MA; Kar YB; Kiong TS; Misran H; Khandaker MU; Fouad Y; Soudagar MEM; Cuce E Sci Rep; 2024 Aug; 14(1):19995. PubMed ID: 39198679 [TBL] [Abstract][Full Text] [Related]
45. Device modeling and numerical study of a double absorber solar cell using a variety of electron transport materials. Cheragee SH; Alam MJ Heliyon; 2023 Jul; 9(7):e18265. PubMed ID: 37519688 [TBL] [Abstract][Full Text] [Related]
46. Graphene oxide as an additive to improve perovskite film crystallization and morphology for high-efficiency solar cells. Zhang X; Ji G; Xiong D; Su Z; Zhao B; Shen K; Yang Y; Gao X RSC Adv; 2018 Jan; 8(2):987-993. PubMed ID: 35538957 [TBL] [Abstract][Full Text] [Related]
47. A general approach to high-efficiency perovskite solar cells by any antisolvent. Taylor AD; Sun Q; Goetz KP; An Q; Schramm T; Hofstetter Y; Litterst M; Paulus F; Vaynzof Y Nat Commun; 2021 Mar; 12(1):1878. PubMed ID: 33767163 [TBL] [Abstract][Full Text] [Related]
48. Antisolvent Engineering to Optimize Grain Crystallinity and Hole-Blocking Capability of Perovskite Films for High-Performance Photovoltaics. Huang Y; Liu T; Wang B; Li J; Li D; Wang G; Lian Q; Amini A; Chen S; Cheng C; Xing G Adv Mater; 2021 Sep; 33(38):e2102816. PubMed ID: 34338381 [TBL] [Abstract][Full Text] [Related]
49. Easily accessible polymer additives for tuning the crystal-growth of perovskite thin-films for highly efficient solar cells. Dong Q; Wang Z; Zhang K; Yu H; Huang P; Liu X; Zhou Y; Chen N; Song B Nanoscale; 2016 Mar; 8(10):5552-8. PubMed ID: 26887633 [TBL] [Abstract][Full Text] [Related]
50. Improvement of interfacial contact for efficient PCBM/MAPbI Chandel A; Wu JR; Thakur D; Kassou S; Chiang SE; Cheng KJ; Li CY; Yen YS; Chen SH; Chang SH Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34407524 [TBL] [Abstract][Full Text] [Related]
51. Enhanced performance of CH3NH3PbI3-x Cl x perovskite solar cells by CH3NH3I modification of TiO2-perovskite layer interface. Wang W; Zhang Z; Cai Y; Chen J; Wang J; Huang R; Lu X; Gao X; Shui L; Wu S; Liu JM Nanoscale Res Lett; 2016 Dec; 11(1):316. PubMed ID: 27356563 [TBL] [Abstract][Full Text] [Related]
52. Improving the Morphology Stability of Spiro-OMeTAD Films for Enhanced Thermal Stability of Perovskite Solar Cells. Song W; Rakocevic L; Thiruvallur Eachambadi R; Qiu W; Bastos JP; Gehlhaar R; Kuang Y; Hadipour A; Aernouts T; Poortmans J ACS Appl Mater Interfaces; 2021 Sep; 13(37):44294-44301. PubMed ID: 34498844 [TBL] [Abstract][Full Text] [Related]
54. Highly Efficient and Stable MAPbI₃ Perovskite Solar Cell Induced by Regulated Nucleation and Ostwald Recrystallization. Huang Z; Wang D; Wang S; Zhang T Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751646 [TBL] [Abstract][Full Text] [Related]
55. A Critical Review on Crystal Growth Techniques for Scalable Deposition of Photovoltaic Perovskite Thin Films. Abbas M; Zeng L; Guo F; Rauf M; Yuan XC; Cai B Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138192 [TBL] [Abstract][Full Text] [Related]
56. Additive Engineering in Antisolvent for Widening the Processing Window and Promoting Perovskite Seed Formation in Perovskite Solar Cells. Chen C; Zhou Z; Jiang Y; Feng Y; Fang Y; Liu J; Chen M; Liu J; Gao J; Feng SP ACS Appl Mater Interfaces; 2022 Apr; 14(15):17348-17357. PubMed ID: 35389214 [TBL] [Abstract][Full Text] [Related]
57. Air-stable mixed cation lead halide perovskite films and microscopic study of their degradation process. Agarwal A; Omagari S; Vacha M Nanoscale; 2023 Jun; 15(25):10642-10650. PubMed ID: 37312591 [TBL] [Abstract][Full Text] [Related]
58. Accelerated Formation of 2D Ruddlesden-Popper Perovskite Thin Films by Lewis Bases for High Efficiency Solar Cell Applications. Gowdru SM; Lin JC; Wang ST; Chen YC; Wu KC; Jiang CN; Chen YD; Li SS; Chang YJ; Wang DY Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683671 [TBL] [Abstract][Full Text] [Related]
59. Nucleation and Crystal Growth of Organic-Inorganic Lead Halide Perovskites under Different Relative Humidity. Gao H; Bao C; Li F; Yu T; Yang J; Zhu W; Zhou X; Fu G; Zou Z ACS Appl Mater Interfaces; 2015 May; 7(17):9110-7. PubMed ID: 25871284 [TBL] [Abstract][Full Text] [Related]
60. Vacuum Quenching for Large-Area Perovskite Film Deposition. Gu L; Fei F; Xu Y; Wang S; Yuan N; Ding J ACS Appl Mater Interfaces; 2022 Jan; 14(2):2949-2957. PubMed ID: 34985243 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]