These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 36079948)
1. Screen Printing of Surface-Modified Barium Titanate/Polyvinylidene Fluoride Nanocomposites for High-Performance Flexible Piezoelectric Nanogenerators. Li H; Lim S Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079948 [TBL] [Abstract][Full Text] [Related]
2. Boosting Performance of Self-Polarized Fully Printed Piezoelectric Nanogenerators via Modulated Strength of Hydrogen Bonding Interactions. Li H; Lim S Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443739 [TBL] [Abstract][Full Text] [Related]
3. Mortise-tenon joint structured hydrophobic surface-functionalized barium titanate/polyvinylidene fluoride nanocomposites for printed self-powered wearable sensors. Li H; Song H; Long M; Saeed G; Lim S Nanoscale; 2021 Feb; 13(4):2542-2555. PubMed ID: 33475650 [TBL] [Abstract][Full Text] [Related]
4. Enhanced piezoelectric response in BTO NWs-PVDF composite through tuning of polar phase content. Hazra S; Ghatak A; Ghosh A; Sengupta S; Raychaudhuri AK; Ghosh B Nanotechnology; 2022 Nov; 34(4):. PubMed ID: 36301677 [TBL] [Abstract][Full Text] [Related]
5. High-Performance Piezoelectric Nanogenerator of BTO-PVDF Nanofibers for Wearable Sensing. Jiang J; Wan L; Li L; Li P Macromol Rapid Commun; 2024 Mar; 45(6):e2300619. PubMed ID: 38232954 [TBL] [Abstract][Full Text] [Related]
6. Boosting the Piezoelectric Response and Interfacial Compatibility in Flexible Piezoelectric Composites via DET-Doping BT Nanoparticles. Liu L; Zhang H; Zhou S; Du C; Liu M; Zhang Y Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543349 [TBL] [Abstract][Full Text] [Related]
8. Polyvinylidene Fluoride Based Piezoelectric Composites with Strong Interfacial Adhesion via Click Chemistry for Self-Powered Flexible Sensors. Tu Y; Yang Y; Zheng Y; Guo S; Shen J Small; 2024 Jul; 20(28):e2309758. PubMed ID: 38326102 [TBL] [Abstract][Full Text] [Related]
9. Improved Piezoelectric Sensing Performance of P(VDF-TrFE) Nanofibers by Utilizing BTO Nanoparticles and Penetrated Electrodes. Hu X; Yan X; Gong L; Wang F; Xu Y; Feng L; Zhang D; Jiang Y ACS Appl Mater Interfaces; 2019 Feb; 11(7):7379-7386. PubMed ID: 30676033 [TBL] [Abstract][Full Text] [Related]
10. Waste cotton textile-derived cellulose composite porous film with enhanced piezoelectric performance for energy harvesting and self-powered sensing. Pan L; Wang Y; Jin Q; Luo Y; Zhou Z; Zhu M Carbohydr Polym; 2024 Dec; 346():122607. PubMed ID: 39245491 [TBL] [Abstract][Full Text] [Related]
11. Piezoelectric nanogenerators from sustainable biowaste source: Power harvesting and respiratory monitoring with electrospun crab shell powder-poly(vinylidene fluoride) composite nanofibers. Divya S; Ramasundaram S; Aruchamy K; Oh TH; Levingstone T; Dunne N J Colloid Interface Sci; 2025 Feb; 679(Pt A):324-334. PubMed ID: 39366262 [TBL] [Abstract][Full Text] [Related]
12. Porosity Modulated High-Performance Piezoelectric Nanogenerator Based on Organic/Inorganic Nanomaterials for Self-Powered Structural Health Monitoring. Rana MM; Khan AA; Huang G; Mei N; Saritas R; Wen B; Zhang S; Voss P; Abdel-Rahman E; Leonenko Z; Islam S; Ban D ACS Appl Mater Interfaces; 2020 Oct; 12(42):47503-47512. PubMed ID: 32969216 [TBL] [Abstract][Full Text] [Related]
13. Cesium Lead Halide Perovskite Decorated Polyvinylidene Fluoride Nanofibers for Wearable Piezoelectric Nanogenerator Yarns. Wu S; Zabihi F; Yeap RY; Darestani MRY; Bahi A; Wan Z; Yang S; Servati P; Ko FK ACS Nano; 2023 Jan; 17(2):1022-35. PubMed ID: 36599026 [TBL] [Abstract][Full Text] [Related]