These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36079968)

  • 61. Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries.
    Wang Y; Xing G; Han ZJ; Shi Y; Wong JI; Huang ZX; Ostrikov KK; Yang HY
    Nanoscale; 2014 Aug; 6(15):8884-90. PubMed ID: 24962690
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nitrogen-Enriched Porous Carbon Coating for Manganese Oxide Nanostructures toward High-Performance Lithium-Ion Batteries.
    Wang J; Zhang C; Kang F
    ACS Appl Mater Interfaces; 2015 May; 7(17):9185-94. PubMed ID: 25871883
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recent Advances and Perspectives of Carbon-Based Nanostructures as Anode Materials for Li-ion Batteries.
    Roselin LS; Juang RS; Hsieh CT; Sagadevan S; Umar A; Selvin R; Hegazy HH
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30991665
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Silicon core-mesoporous shell carbon spheres as high stability lithium-ion battery anode.
    Prakash S; Zhang C; Park JD; Razmjooei F; Yu JS
    J Colloid Interface Sci; 2019 Jan; 534():47-54. PubMed ID: 30205254
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ordered ZnO/Ni Hollow Microsphere Arrays as Anode Materials for Lithium Ion Batteries.
    Shen S; Zhong W; Huang X; Lin Y; Wang T
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30979079
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Silicon and Carbon Nanocomposite Spheres with Enhanced Electrochemical Performance for Full Cell Lithium Ion Batteries.
    Wang W; Favors Z; Li C; Liu C; Ye R; Fu C; Bozhilov K; Guo J; Ozkan M; Ozkan CS
    Sci Rep; 2017 Mar; 7():44838. PubMed ID: 28322285
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Integrated Design of Hierarchical CoSnO
    Chen Z; Fei S; Wu C; Xin P; Huang S; Selegård L; Uvdal K; Hu Z
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19768-19777. PubMed ID: 32255602
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Filled Carbon Nanotubes as Anode Materials for Lithium-Ion Batteries.
    Thauer E; Ottmann A; Schneider P; Möller L; Deeg L; Zeus R; Wilhelmi F; Schlestein L; Neef C; Ghunaim R; Gellesch M; Nowka C; Scholz M; Haft M; Wurmehl S; Wenelska K; Mijowska E; Kapoor A; Bajpai A; Hampel S; Klingeler R
    Molecules; 2020 Feb; 25(5):. PubMed ID: 32120977
    [TBL] [Abstract][Full Text] [Related]  

  • 69. NiCo
    Han H; Song Y; Zhang Y; Kalimuldina G; Bakenov Z
    Nanoscale Res Lett; 2021 Jun; 16(1):105. PubMed ID: 34117941
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biomass-Based Silicon and Carbon for Lithium-Ion Battery Anodes.
    Muraleedharan Pillai M; Kalidas N; Zhao X; Lehto VP
    Front Chem; 2022; 10():882081. PubMed ID: 35601553
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Precisely Tunable Synthesis of Binder-Free Cobalt Oxide-Based Li-Ion Battery Anode Using Scalable Electrothermal Waves.
    Kim W; Shin D; Seo B; Chae S; Jo E; Choi W
    ACS Nano; 2022 Oct; 16(10):17313-17325. PubMed ID: 36129369
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Seeding Iron Trifluoride Nanoparticles on Reduced Graphite Oxide for Lithium-Ion Batteries with Enhanced Loading and Stability.
    Qiu D; Fu L; Zhan C; Lu J; Wu D
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29505-29510. PubMed ID: 30092138
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dendrite-Free Li Metal Plating/Stripping Onto Three-Dimensional Vertical-Graphene@Carbon-Cloth Host.
    Yan C; Xu T; Ma C; Zang J; Xu J; Shi Y; Kong D; Ke C; Li X; Wang Y
    Front Chem; 2019; 7():714. PubMed ID: 31709237
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An Ultrastable and High-Performance Flexible Fiber-Shaped Ni-Zn Battery based on a Ni-NiO Heterostructured Nanosheet Cathode.
    Zeng Y; Meng Y; Lai Z; Zhang X; Yu M; Fang P; Wu M; Tong Y; Lu X
    Adv Mater; 2017 Nov; 29(44):. PubMed ID: 28991385
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithium-Ion Storage.
    Chen G; Yan L; Luo H; Guo S
    Adv Mater; 2016 Sep; 28(35):7580-602. PubMed ID: 27302769
    [TBL] [Abstract][Full Text] [Related]  

  • 76. High electrochemical performance of monodisperse NiCo₂O₂ mesoporous microspheres as an anode material for Li-ion batteries.
    Li J; Xiong S; Liu Y; Ju Z; Qian Y
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):981-8. PubMed ID: 23323836
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A stable TiO
    Farooq U; Ahmed F; Pervez SA; Rehman S; Pope MA; Fichtner M; Roberts EPL
    RSC Adv; 2020 Aug; 10(50):29975-29982. PubMed ID: 35518211
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A High-Capacity and Long-Cycle-Life Lithium-Ion Battery Anode Architecture: Silver Nanoparticle-Decorated SnO
    Kim C; Jung JW; Yoon KR; Youn DY; Park S; Kim ID
    ACS Nano; 2016 Dec; 10(12):11317-11326. PubMed ID: 28024325
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nanostructured CoO/NiO/CoNi anodes with tunable morphology for high performance lithium-ion batteries.
    Liu H; Wang X; Xu H; Yu W; Dong X; Yang Y; Zhang H; Wang J
    Dalton Trans; 2017 Aug; 46(33):11031-11036. PubMed ID: 28782788
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Morphology Controllable Synthesis of NiO/NiFe
    Wang Y; Wu S; Wang C; Wang Y; Han X
    Front Chem; 2018; 6():654. PubMed ID: 30687697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.